scholarly journals Antioxidant and Anti-inflammatory Mechanisms of Astaxanthin in Cardiovascular Diseases

Author(s):  
Carolina Parga Martins Pereira ◽  
Ana Carolina Remondi Souza ◽  
Andrea Rodrigues Vasconcelos ◽  
Pietra Sacramento Prado ◽  
José João Name

Cardiovascular disease is the most common cause of death. Oxidative stress and inflammation are pathophysiological processes involved in the development of cardiovascular diseases, so anti-inflammatory and antioxidant agents that modulate redox balance have become the targets of research to evaluate their molecular mechanisms and therapeutic properties. Astaxanthin, a carotenoid of the xanthophyll group, has potent antioxidant effects due to its molecular structure and its arrangement in the plasma membrane, factors that favor the neutralization of reactive oxygen and nitrogen species. This carotenoid also stands out for its anti-inflammatory activity, possibly interrelated with its antioxidant effect, as well as for its modulation of lipid and glucose metabolism. Considering the potential positive effects of astaxanthin on cardiovascular health evidenced by preclinical and clinical studies, this paper describes the molecular and cellular mechanisms related to the antioxidant and anti-inflammatory properties of this carotenoid in cardiovascular diseases, especially atherosclerosis.

Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1128 ◽  
Author(s):  
Dominik Schüttler ◽  
Sebastian Clauss ◽  
Ludwig T. Weckbach ◽  
Stefan Brunner

Regular physical activity with aerobic and muscle-strengthening training protects against the occurrence and progression of cardiovascular disease and can improve cardiac function in heart failure patients. In the past decade significant advances have been made in identifying mechanisms of cardiomyocyte re-programming and renewal including an enhanced exercise-induced proliferational capacity of cardiomyocytes and its progenitor cells. Various intracellular mechanisms mediating these positive effects on cardiac function have been found in animal models of exercise and will be highlighted in this review. 1) activation of extracellular and intracellular signaling pathways including phosphatidylinositol 3 phosphate kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), EGFR/JNK/SP-1, nitric oxide (NO)-signaling, and extracellular vesicles; 2) gene expression modulation via microRNAs (miR), in particular via miR-17-3p and miR-222; and 3) modulation of cardiac cellular metabolism and mitochondrial adaption. Understanding the cellular mechanisms, which generate an exercise-induced cardioprotective cellular phenotype with physiological hypertrophy and enhanced proliferational capacity may give rise to novel therapeutic targets. These may open up innovative strategies to preserve cardiac function after myocardial injury as well as in aged cardiac tissue.


2020 ◽  
Vol 21 (22) ◽  
pp. 8706
Author(s):  
Albino Carrizzo ◽  
Carmine Izzo ◽  
Maurizio Forte ◽  
Eduardo Sommella ◽  
Paola Di Pietro ◽  
...  

Cardiovascular diseases (CVDs) such as hypertension, atherosclerosis, myocardial infarction, and diabetes are a significant public health problem worldwide. Although several novel pharmacological treatments to reduce the progression of CVDs have been discovered during the last 20 years, the better way to contain the onset of CVDs remains prevention. In this regard, nutraceuticals seem to own a great potential in maintaining human health, exerting important protective cardiovascular effects. In the last years, there has been increased focus on identifying natural compounds with cardiovascular health-promoting effects and also to characterize the molecular mechanisms involved. Although many review articles have focused on the individual natural compound impact on cardiovascular diseases, the aim of this manuscript was to examine the role of the most studied nutraceuticals, such as resveratrol, cocoa, quercetin, curcumin, brassica, berberine and Spirulina platensis, on different CVDs.


Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 285-304
Author(s):  
Niraj Kumar Jha ◽  
Charu Sharma ◽  
Mohamed Fizur Nagoor Meeran ◽  
Saurabh Kumar Jha ◽  
Vivek Dhar Dwivedi ◽  
...  

The COVID-19 pandemic, caused by SARS-CoV-2, is a deadly disease affecting millions due to the non-availability of drugs and vaccines. The majority of COVID-19 drugs have been repurposed based on antiviral, immunomodulatory, and antibiotic potential. The pathogenesis and advanced complications with infection involve the immune-inflammatory cascade. Therefore, a therapeutic strategy could reduce infectivity, inflammation, and immune modulation. In recent years, modulating the endocannabinoid system, particularly activation of the cannabinoid type 2 (CB2) receptor is a promising therapeutic target for modulation of immune-inflammatory responses. JWH133, a selective, full functional agonist of the CB2 receptor, has been extensively studied for its potent anti-inflammatory, antiviral, and immunomodulatory properties. JWH133 modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. In this study, we propose that JWH133 could be a promising candidate for targeting infection, immunity, and inflammation in COVID-19, due to its pharmacological and molecular mechanisms in numerous preclinical efficacy and safety studies, along with its immunomodulatory, anti-inflammatory, organoprotective, and antiviral properties. Thus, JWH133 should be investigated in preclinical and clinical studies for its potential as an agent or adjuvant with other agents for its effect on viremia, infectivity, immune modulation, resolution of inflammation, reduction in severity, and progression of complications in COVID-19. JWH133 is devoid of psychotropic effects due to CB2 receptor selectivity, has negligible toxicity, good bioavailability and druggable properties, including pharmacokinetic and physicochemical effects. We believe that JWH133 could be a promising drug and may inspire further studies for an evidence-based approach against COVID-19.


Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 550
Author(s):  
Liang-Yin Ke ◽  
Shi Hui Law ◽  
Vineet Kumar Mishra ◽  
Farzana Parveen ◽  
Hua-Chen Chan ◽  
...  

Dysregulation of glucose and lipid metabolism increases plasma levels of lipoproteins and triglycerides, resulting in vascular endothelial damage. Remarkably, the oxidation of lipid and lipoprotein particles generates electronegative lipoproteins that mediate cellular deterioration of atherosclerosis. In this review, we examined the core of atherosclerotic plaque, which is enriched by byproducts of lipid metabolism and lipoproteins, such as oxidized low-density lipoproteins (oxLDL) and electronegative subfraction of LDL (LDL(−)). We also summarized the chemical properties, receptors, and molecular mechanisms of LDL(−). In combination with other well-known markers of inflammation, namely metabolic diseases, we concluded that LDL(−) can be used as a novel prognostic tool for these lipid disorders. In addition, through understanding the underlying pathophysiological molecular routes for endothelial dysfunction and inflammation, we may reassess current therapeutics and might gain a new direction to treat atherosclerotic cardiovascular diseases, mainly targeting LDL(−) clearance.


2021 ◽  
Vol 22 (18) ◽  
pp. 10152
Author(s):  
Roland Gal ◽  
Laszlo Deres ◽  
Kalman Toth ◽  
Robert Halmosi ◽  
Tamas Habon

Cardiovascular diseases are the leading causes of death worldwide. The cardioprotective effects of natural polyphenols such as resveratrol (3,5,4-trihydroxystilbene) have been extensively investigated throughout recent decades. Many studies of RES have focused on its favorable effects on pathological conditions related to cardiovascular diseases and their risk factors. The aim of this review was to summarize the wide beneficial effects of resveratrol on the cardiovascular system, including signal transduction pathways of cell longevity, energy metabolism of cardiomyocytes or cardiac remodeling, and its anti-inflammatory and antioxidant properties. In addition, this paper discusses the significant preclinical and human clinical trials of recent years with resveratrol on cardiovascular system. Finally, we present a short overview of antiviral and anti-inflammatory properties and possible future perspectives on RES against COVID-19 in cardiovascular diseases.


Author(s):  
Vienna E. Brunt ◽  
Christopher T. Minson

Cardiovascular diseases (CVD) are the leading cause of death worldwide, and novel therapies are drastically needed to prevent or delay the onset of CVD in order to reduce the societal and healthcare burdens associated with these chronic diseases. One such therapy is 'heat therapy', or chronic, repeated use of hot baths or saunas. Although using heat exposure to improve health is not a new concept, it has received renewed attention in recent years as a growing number of studies have demonstrated robust and widespread beneficial effects of heat therapy on cardiovascular health. Here, we review the existing literature, with particular focus on the molecular mechanisms that underscore the cardiovascular benefits of this practice.


2019 ◽  
Vol 8 (1) ◽  
pp. 90-99 ◽  
Author(s):  
I. V. Samorodskaya ◽  
E. D. Bazdyrev ◽  
O. L. Barbarash

Modifiable cardiovascular risk factors commonly include disorders of lipid metabolism, arterial hypertension, smoking, alcohol consumption, physical inactivity, overweight, etc. The number of epidemiological studies have already proved the presence of the associations between them and the risk of developing cardiovascular diseases. However, the analysis of the recent studies showed that despite the negative impact of these factors on cardiovascular health, there are some arguments that prove their positive effects. Such a phenomenon is commonly described in the publications as a “paradox” of a particular risk factor. This review presents data on the smoking paradox – one of the leading risk factors contributing to the development of cardiovascular diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Liang Chen ◽  
Meng Shi ◽  
Chenghao Lv ◽  
Ying Song ◽  
Yuanjie Wu ◽  
...  

Dihydromyricetin (DHM) is a flavonoid extracted from the leaves and stems of the edible plant Ampelopsis grossedentata that has been used for Chinese Traditional Medicine. It has attracted considerable attention from consumers due to its beneficial properties including anticancer, antioxidative, and anti-inflammatory activities. Continuous oxidative stress caused by intracellular redox imbalance can lead to chronic inflammation, which is intimately associated with the initiation, promotion, and progression of cancer. DHM is considered a potential redox regulator for chronic disease prevention, and its biological activities are abundantly evaluated by using diverse cell and animal models. However, clinical investigations are still scanty. This review summarizes the current potential chemopreventive effects of DHM, including its properties such as anticancer, antioxidative, and anti-inflammatory activities, and further discusses the underlying molecular mechanisms of DHM in cancer chemoprevention by targeting redox balance and influencing the gut microbiota.


2019 ◽  
Vol 20 (19) ◽  
pp. 4716 ◽  
Author(s):  
Antonino Tuttolomondo ◽  
Irene Simonetta ◽  
Mario Daidone ◽  
Alba Mogavero ◽  
Antonella Ortello ◽  
...  

Several studies indicated how dietary patterns that were obtained from nutritional cluster analysis can predict disease risk or mortality. Low-grade chronic inflammation represents a background pathogenetic mechanism linking metabolic risk factors to increased risk of chronic degenerative diseases. A Mediterranean diet (MeDi) style has been reported as associated with a lower degree of inflammation biomarkers and with a protective role on cardiovascular and cerebrovascular events. There is heterogeneity in defining the MedDiet, and it can, owing to its complexity, be considered as an exposome with thousands of nutrients and phytochemicals. Recently, it has been reported a novel positive association between baseline plasma ceramide concentrations and cardiovascular events and how adherence to a Mediterranean Diet-style may influence the potential negative relationship between elevated plasma ceramide concentrations and cardiovascular diseases (CVD). Several randomized controlled trials (RCTs) showed the positive effects of the MeDi diet style on several cardiovascular risk factors, such as body mass index, waist circumference, blood lipids, blood pressure, inflammatory markers and adhesion molecules, and diabetes and how these advantages of the MeDi are maintained in comparison of a low-fat diet. Some studies reported a positive effect of adherence to a Mediterranean Diet and heart failure incidence, whereas some recent studies, such as the PREDIMED study, showed that the incidence of major cardiovascular events was lower among those assigned to MeDi supplemented with extra-virgin olive oil or nuts than among those assigned to a reduced-fat diet. New studies are needed to better understand the molecular mechanisms, whereby the MedDiet may exercise its effects. Here, we present recent advances in understanding the molecular basis of MedDiet effects, mainly focusing on cardiovascular diseases, but also discussing other related diseases. We review MedDiet composition and assessment as well as the latest advances in the genomic, epigenomic (DNA methylation, histone modifications, microRNAs, and other emerging regulators), transcriptomic (selected genes and whole transcriptome), and metabolomic and metagenomic aspects of the MedDiet effects (as a whole and for its most typical food components). We also present a review of the clinical effects of this dietary style underlying the biochemical and molecular effects of the Mediterranean diet. Our purpose is to review the main features of the Mediterranean diet in particular its benefits on human health, underling the anti-inflammatory, anti-oxidant and anti-atherosclerotic effects to which new knowledge about epigenetic and gut-microbiota relationship is recently added.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aleksandra Danielak ◽  
John L Wallace ◽  
Tomasz Brzozowski ◽  
Marcin Magierowski

Non-steroidal anti-inflammatory drugs (NSAIDs) represent one of the most widely used classes of drugs and play a pivotal role in the therapy of numerous inflammatory diseases. However, the adverse effects of these drugs, especially when applied chronically, frequently affect gastrointestinal (GI) tract, resulting in ulceration and bleeding, which constitutes a significant limitation in clinical practice. On the other hand, it has been recently discovered that gaseous mediators nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide (CO) contribute to many physiological processes in the GI tract, including the maintenance of GI mucosal barrier integrity. Therefore, based on the possible therapeutic properties of NO, H2S and CO, a novel NSAIDs with ability to release one or more of those gaseous messengers have been synthesized. Until now, both preclinical and clinical studies have shown promising effects with respect to the anti-inflammatory potency as well as GI-safety of these novel NSAIDs. This review provides an overview of the gaseous mediators-based NSAIDs along with their mechanisms of action, with special emphasis on possible implications for GI mucosal defense mechanisms.


Sign in / Sign up

Export Citation Format

Share Document