scholarly journals Combating Fake News in “Low-Resource” Languages: Amharic Fake News Detection Accompanied by Resource Crafting

Information ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Fantahun Gereme ◽  
William Zhu ◽  
Tewodros Ayall ◽  
Dagmawi Alemu

The need to fight the progressive negative impact of fake news is escalating, which is evident in the strive to do research and develop tools that could do this job. However, a lack of adequate datasets and good word embeddings have posed challenges to make detection methods sufficiently accurate. These resources are even totally missing for “low-resource” African languages, such as Amharic. Alleviating these critical problems should not be left for tomorrow. Deep learning methods and word embeddings contributed a lot in devising automatic fake news detection mechanisms. Several contributions are presented, including an Amharic fake news detection model, a general-purpose Amharic corpus (GPAC), a novel Amharic fake news detection dataset (ETH_FAKE), and Amharic fasttext word embedding (AMFTWE). Our Amharic fake news detection model, evaluated with the ETH_FAKE dataset and using the AMFTWE, performed very well.

2019 ◽  
Vol 9 (19) ◽  
pp. 4062 ◽  
Author(s):  
Heejung Jwa ◽  
Dongsuk Oh ◽  
Kinam Park ◽  
Jang Kang ◽  
Hueiseok Lim

News currently spreads rapidly through the internet. Because fake news stories are designed to attract readers, they tend to spread faster. For most readers, detecting fake news can be challenging and such readers usually end up believing that the fake news story is fact. Because fake news can be socially problematic, a model that automatically detects such fake news is required. In this paper, we focus on data-driven automatic fake news detection methods. We first apply the Bidirectional Encoder Representations from Transformers model (BERT) model to detect fake news by analyzing the relationship between the headline and the body text of news. To further improve performance, additional news data are gathered and used to pre-train this model. We determine that the deep-contextualizing nature of BERT is best suited for this task and improves the 0.14 F-score over older state-of-the-art models.


Author(s):  
Xuewu Zhang ◽  
Yansheng Gong ◽  
Chen Qiao ◽  
Wenfeng Jing

AbstractThis article mainly focuses on the most common types of high-speed railways malfunctions in overhead contact systems, namely, unstressed droppers, foreign-body invasions, and pole number-plate malfunctions, to establish a deep-network detection model. By fusing the feature maps of the shallow and deep layers in the pretraining network, global and local features of the malfunction area are combined to enhance the network's ability of identifying small objects. Further, in order to share the fully connected layers of the pretraining network and reduce the complexity of the model, Tucker tensor decomposition is used to extract features from the fused-feature map. The operation greatly reduces training time. Through the detection of images collected on the Lanxin railway line, experiments result show that the proposed multiview Faster R-CNN based on tensor decomposition had lower miss probability and higher detection accuracy for the three types faults. Compared with object-detection methods YOLOv3, SSD, and the original Faster R-CNN, the average miss probability of the improved Faster R-CNN model in this paper is decreased by 37.83%, 51.27%, and 43.79%, respectively, and average detection accuracy is increased by 3.6%, 9.75%, and 5.9%, respectively.


2021 ◽  
Author(s):  
Hansi Hettiarachchi ◽  
Mariam Adedoyin-Olowe ◽  
Jagdev Bhogal ◽  
Mohamed Medhat Gaber

AbstractSocial media is becoming a primary medium to discuss what is happening around the world. Therefore, the data generated by social media platforms contain rich information which describes the ongoing events. Further, the timeliness associated with these data is capable of facilitating immediate insights. However, considering the dynamic nature and high volume of data production in social media data streams, it is impractical to filter the events manually and therefore, automated event detection mechanisms are invaluable to the community. Apart from a few notable exceptions, most previous research on automated event detection have focused only on statistical and syntactical features in data and lacked the involvement of underlying semantics which are important for effective information retrieval from text since they represent the connections between words and their meanings. In this paper, we propose a novel method termed Embed2Detect for event detection in social media by combining the characteristics in word embeddings and hierarchical agglomerative clustering. The adoption of word embeddings gives Embed2Detect the capability to incorporate powerful semantical features into event detection and overcome a major limitation inherent in previous approaches. We experimented our method on two recent real social media data sets which represent the sports and political domain and also compared the results to several state-of-the-art methods. The obtained results show that Embed2Detect is capable of effective and efficient event detection and it outperforms the recent event detection methods. For the sports data set, Embed2Detect achieved 27% higher F-measure than the best-performed baseline and for the political data set, it was an increase of 29%.


2021 ◽  
pp. 1-21
Author(s):  
Shahela Saif ◽  
Samabia Tehseen

Deep learning has been used in computer vision to accomplish many tasks that were previously considered too complex or resource-intensive to be feasible. One remarkable application is the creation of deepfakes. Deepfake images change or manipulate a person’s face to give a different expression or identity by using generative models. Deepfakes applied to videos can change the facial expressions in a manner to associate a different speech with a person than the one originally given. Deepfake videos pose a serious threat to legal, political, and social systems as they can destroy the integrity of a person. Research solutions are being designed for the detection of such deepfake content to preserve privacy and combat fake news. This study details the existing deepfake video creation techniques and provides an overview of the deepfake datasets that are publicly available. More importantly, we provide an overview of the deepfake detection methods, along with a discussion on the issues, challenges, and future research directions. The study aims to present an all-inclusive overview of deepfakes by providing insights into the deepfake creation techniques and the latest detection methods, facilitating the development of a robust and effective deepfake detection solution.


Author(s):  
Qing Cai ◽  
Moatz Saad ◽  
Mohamed Abdel-Aty ◽  
Jinghui Yuan ◽  
Jaeyoung Lee

With the challenges of increasing traffic congestion, the concept of managed lanes (MLs) has been gaining popularity recently as a means to effectively improve traffic mobility. MLs are usually designed to be left-lane concurrent with an at-grade access/exit. Such a design forms weaving segments since it requires vehicles to change multiple general purpose lanes (GPLs) to enter or exit the ML. The weaving segments could have a negative impact on traffic safety in the GPLs. This study provides a comprehensive investigation of the safety impact of different lengths for each lane change maneuver on GPL weaving segments close to the ingress and egress of MLs through two simulation approaches: VISSIM microsimulation and driving simulator. The two simulation studies are developed based on traffic data collected from freeway I-95 in Miami, Florida. The results from the two simulation studies support each other. Based on the two simulation studies, it is recommended that 1,000 feet be used as the optimal length for per lane change at the GPLs weaving segments with MLs. The safety impact of traffic volume, variable speed limit control strategies, and drivers’ gender and age characteristics are also explored. This study can provide valuable insight for evaluating the traffic performance of freeway weaving segments with the presence of concurrent GPLs and MLs in a highway safety context. It also provides guidelines for future conversion of freeways to include MLs.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6125
Author(s):  
Dan Lv ◽  
Nurbol Luktarhan ◽  
Yiyong Chen

Enterprise systems typically produce a large number of logs to record runtime states and important events. Log anomaly detection is efficient for business management and system maintenance. Most existing log-based anomaly detection methods use log parser to get log event indexes or event templates and then utilize machine learning methods to detect anomalies. However, these methods cannot handle unknown log types and do not take advantage of the log semantic information. In this article, we propose ConAnomaly, a log-based anomaly detection model composed of a log sequence encoder (log2vec) and multi-layer Long Short Term Memory Network (LSTM). We designed log2vec based on the Word2vec model, which first vectorized the words in the log content, then deleted the invalid words through part of speech tagging, and finally obtained the sequence vector by the weighted average method. In this way, ConAnomaly not only captures semantic information in the log but also leverages log sequential relationships. We evaluate our proposed approach on two log datasets. Our experimental results show that ConAnomaly has good stability and can deal with unseen log types to a certain extent, and it provides better performance than most log-based anomaly detection methods.


2021 ◽  
Vol 233 ◽  
pp. 02012
Author(s):  
Shousheng Liu ◽  
Zhigang Gai ◽  
Xu Chai ◽  
Fengxiang Guo ◽  
Mei Zhang ◽  
...  

Bacterial colonies detecting and counting is tedious and time-consuming work. Fortunately CNN (convolutional neural network) detection methods are effective for target detection. The bacterial colonies are a kind of small targets, which have been a difficult problem in the field of target detection technology. This paper proposes a small target enhancement detection method based on double CNNs, which can not only improve the detection accuracy, but also maintain the detection speed similar to the general detection model. The detection method uses double CNNs. The first CNN uses SSD_MOBILENET_V1 network with both target positioning and target recognition functions. The candidate targets are screened out with a low confidence threshold, which can ensure no missing detection of small targets. The second CNN obtains candidate target regions according to the first round of detection, intercepts image sub-blocks one by one, uses the MOBILENET_V1 network to filter out targets with a higher confidence threshold, which can ensure good detection of small targets. Through the two-round enhancement detection method has been transplanted to the embedded platform NVIDIA Jetson AGX Xavier, the detection accuracy of small targets is significantly improved, and the target error detection rate and missed detection rate are reduced to less than 1%.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Guanghui Liang ◽  
Jianmin Pang ◽  
Zheng Shan ◽  
Runqing Yang ◽  
Yihang Chen

To address emerging security threats, various malware detection methods have been proposed every year. Therefore, a small but representative set of malware samples are usually needed for detection model, especially for machine-learning-based malware detection models. However, current manual selection of representative samples from large unknown file collection is labor intensive and not scalable. In this paper, we firstly propose a framework that can automatically generate a small data set for malware detection. With this framework, we extract behavior features from a large initial data set and then use a hierarchical clustering technique to identify different types of malware. An improved genetic algorithm based on roulette wheel sampling is implemented to generate final test data set. The final data set is only one-eighteenth the volume of the initial data set, and evaluations show that the data set selected by the proposed framework is much smaller than the original one but does not lose nearly any semantics.


Author(s):  
Arkadipta De ◽  
Dibyanayan Bandyopadhyay ◽  
Baban Gain ◽  
Asif Ekbal

Fake news classification is one of the most interesting problems that has attracted huge attention to the researchers of artificial intelligence, natural language processing, and machine learning (ML). Most of the current works on fake news detection are in the English language, and hence this has limited its widespread usability, especially outside the English literate population. Although there has been a growth in multilingual web content, fake news classification in low-resource languages is still a challenge due to the non-availability of an annotated corpus and tools. This article proposes an effective neural model based on the multilingual Bidirectional Encoder Representations from Transformer (BERT) for domain-agnostic multilingual fake news classification. Large varieties of experiments, including language-specific and domain-specific settings, are conducted. The proposed model achieves high accuracy in domain-specific and domain-agnostic experiments, and it also outperforms the current state-of-the-art models. We perform experiments on zero-shot settings to assess the effectiveness of language-agnostic feature transfer across different languages, showing encouraging results. Cross-domain transfer experiments are also performed to assess language-independent feature transfer of the model. We also offer a multilingual multidomain fake news detection dataset of five languages and seven different domains that could be useful for the research and development in resource-scarce scenarios.


Sign in / Sign up

Export Citation Format

Share Document