scholarly journals Protection of Service-Oriented Environments Serving Critical Infrastructures

Inventions ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 62
Author(s):  
Dimosthenis Kyriazis

The emergence of service-oriented architectures has driven the shift towards a service-oriented paradigm, which has been adopted in several application domains. The advent of cloud computing facilities and recently of edge computing environments has increased the aforementioned paradigm shift towards service provisioning. In this context, various “traditional” critical infrastructure components have turned to services, being deployed and managed on top of cloud and edge computing infrastructures. However, the latter poses a specific challenge: the services of the critical infrastructures within and across application verticals/domains (e.g., transportation, health, industrial venues, etc.) need to be continuously available with near-zero downtime. In this context, this paper presents an approach for high-performance monitoring and failure detection of critical infrastructure services that are deployed in virtualized environments. The failure detection framework consists of distributed agents (i.e., monitoring services) to ensure timely collection of monitoring data, while it is enhanced with a voting algorithm to minimize the case of false positives. The goal of the proposed approach is to detect failures in datacenters that support critical infrastructures by targeting both the acquisition of monitoring data in a performant way and the minimization of false positives in terms of potential failure detection. The specific approach is the baseline towards decision making and triggering of actions in runtime to ensure service high availability, given that it provides the required data for decision making on time with high accuracy.

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Jouni Pöyhönen ◽  
Jyri Rajamäki ◽  
Harri Ruoslahti ◽  
Martti Lehto

The European Union promotes collaboration between authorities and the private sector, and the providers of the most critical services to society face security related obligations. In this paper, critical infrastructure is seen as a system of systems that can be subject to cyber-attacks and  other disturbances. Situational awareness (SA) enhances preparations for and decision-making during assessed and unforeseen disruptive incidents, and promoting Cyber effective situational  awareness (CSA) requires information sharing between the different interest groups. This research is constructive in nature, where innovative constructions developed as solutions  for domain-specific real world problems, while the research question is: “How can cyber  situational awareness protect critical infrastructures?” The Observe – Orient – Decide – Act (OODA) loop is examined as a way to promote  collaboration towards a shared situational picture, awareness and understanding to meet challenges of forming CSA in relation to risk assessment (RA) and improving resilience. Three levels of organizational decision-making are examined in relation a five-layer cyber structure of an organization to provide a more comprehensive systems view of organizational cyber security. Successful, crisis-management efforts enable organizations to sustain and resume operations, minimize losses, and adapt to manage future incidents, as many critical infrastructures typically lack resilience and may easily lose essential functionality when hit by an adverse event. Situation awareness is the main prerequisite towards cyber security. Without situation awareness, it is impossible to systematically prevent, identify, and protect the system from cyber incidents.


Author(s):  
Martin Hall-May ◽  
Mike Surridge ◽  
Roman Nossal-Tüyeni

Resilient critical infrastructure management with a service oriented architecture: A test case using airport collaborative decision making The SERSCIS approach aims to support the use of interconnected systems of services in Critical Infrastructure (CI) applications. The problem of system interconnectedness is aptly demonstrated by ‘Airport Collaborative Decision Making’ (A-CDM). Failure or underperformance of any of the interlinked ICT systems may compromise the ability of airports to plan their use of resources to sustain high levels of air traffic, or to provide accurate aircraft movement forecasts to the wider European air traffic management systems. The proposed solution is to introduce further SERSCIS ICT components to manage dependability and interdependency. These use semantic models of the critical infrastructure, including its ICT services, to identify faults and potential risks and to increase human awareness of them. Semantics allow information and services to be described in a way that makes them understandable to computers. Thus when a failure (or a threat of it) is detected, SERSCIS components can take action to manage the consequences, including changing the interdependency relationships between services. In some cases, the components will be able to take action autonomously, e.g., to manage ‘local’ issues such as the allocation of CPU time to maintain service performance, or the selection of services where there are redundant sources available. In other cases the components will alert human operators so they can take action instead. The goal of this paper is to describe a Service Oriented Architecture (SOA) that can be used to address the management of ICT components and interdependencies in critical infrastructure systems.


2021 ◽  
Vol 11 (16) ◽  
pp. 7228
Author(s):  
Edward Staddon ◽  
Valeria Loscri ◽  
Nathalie Mitton

With the ever advancing expansion of the Internet of Things (IoT) into our everyday lives, the number of attack possibilities increases. Furthermore, with the incorporation of the IoT into Critical Infrastructure (CI) hardware and applications, the protection of not only the systems but the citizens themselves has become paramount. To do so, specialists must be able to gain a foothold in the ongoing cyber attack war-zone. By organising the various attacks against their systems, these specialists can not only gain a quick overview of what they might expect but also gain knowledge into the specifications of the attacks based on the categorisation method used. This paper presents a glimpse into the area of IoT Critical Infrastructure security as well as an overview and analysis of attack categorisation methodologies in the context of wireless IoT-based Critical Infrastructure applications. We believe this can be a guide to aid further researchers in their choice of adapted categorisation approaches. Indeed, adapting appropriated categorisation leads to a quicker attack detection, identification, and recovery. It is, thus, paramount to have a clear vision of the threat landscapes of a specific system.


2021 ◽  
Vol 13 (6) ◽  
pp. 3133
Author(s):  
Rita Der Sarkissian ◽  
Anas Dabaj ◽  
Youssef Diab ◽  
Marc Vuillet

A limited number of studies in the scientific literature discuss the “Build-Back-Better” (BBB) critical infrastructure (CI) concept. Investigations of its operational aspects and its efficient implementation are even rarer. The term “Better” in BBB is often confusing to practitioners and leads to unclear and non-uniform objectives for guiding accurate decision-making. In an attempt to fill these gaps, this study offers a conceptual analysis of BBB’s operational aspects by examining the term “Better”. In its methodological approach, this study evaluates the state of Saint-Martin’s CI before and after Hurricane Irma and, accordingly, reveals the indicators to assess during reconstruction projects. The proposed methods offer practitioners a guidance tool for planning efficient BBB CI projects or for evaluating ongoing programs through the established BBB evaluation grid. Key findings of the study offer insights and a new conceptual equation of the BBB CI by revealing the holistic and interdisciplinary connotations behind the term “Better” CI: “Build-Back-resilient”, “Build-Back-sustainable”, and “Build-Back-accessible to all and upgraded CI”. The proposed explanations can facilitate the efficient application of BBB for CI by operators, stakeholders, and practitioners and can help them to contextualize the term “Better” with respect to their area and its CI systems.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Paula Morella ◽  
María Pilar Lambán ◽  
Jesús Antonio Royo ◽  
Juan Carlos Sánchez

Among the new trends in technology that have emerged through the Industry 4.0, Cyber Physical Systems (CPS) and Internet of Things (IoT) are crucial for the real-time data acquisition. This data acquisition, together with its transformation in valuable information, are indispensable for the development of real-time indicators. Moreover, real-time indicators provide companies with a competitive advantage over the competition since they enhance the calculus and speed up the decision-making and failure detection. Our research highlights the advantages of real-time data acquisition for supply chains, developing indicators that would be impossible to achieve with traditional systems, improving the accuracy of the existing ones and enhancing the real-time decision-making. Moreover, it brings out the importance of integrating technologies 4.0 in industry, in this case, CPS and IoT, and establishes the main points for a future research agenda of this topic.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
A. E. Schweikert ◽  
G. F. L’Her ◽  
M. R. Deinert

AbstractCritical infrastructure failures from natural hazard events affect the economic and social well-being of communities. This is particularly true in lower income countries, where infrastructure may be less resistant to natural hazards and disaster recovery is often limited by available resources. The interconnectivity of these systems can strongly affect the services they deliver, and the failure of one infrastructure system can result in cascade failures with wide-reaching consequences. Unfortunately, interconnectivity has been particularly difficult to measure. We present a method for identifying service-oriented interdependencies in interconnected networks. The approach uses well-established methods for network analysis and is demonstrated for healthcare services in the Commonwealth of Dominica, a small island state in the Caribbean. We show that critical links in road networks necessary for healthcare service delivery are important for more than just patient access to a facility, but also on the supply chains that enable the hospitals to function (e.g., water, fuel, medicine). Once identified, the critical links can be overlaid with known hazard vulnerabilities to identify the infrastructure segments of highest priority, based on the risk and consequences of failure. An advantage of the approach presented is that it requires relatively little input data when compared to many network prioritization models and can be run using open-source geospatial data such as OpenStreetMap. The method can be expanded beyond road networks to assess the service-oriented criticality of any infrastructure network.


2015 ◽  
Vol 2 (2) ◽  
pp. 152-168 ◽  
Author(s):  
Stephen Harvey ◽  
John William Baird Lyle ◽  
Bob Muir

A defining element of coaching expertise is characterised by the coach’s ability to make decisions. Recent literature has explored the potential of Naturalistic Decision Making (NDM) as a useful framework for research into coaches’ in situ decision making behaviour. The purpose of this paper was to investigate whether the NDM paradigm offered a valid mechanism for exploring three high performance coaches’ decision-making behaviour in competition and training settings. The approach comprised three phases: 1) existing literature was synthesised to develop a conceptual framework of decision-making cues to guide and shape the exploration of empirical data; 2) data were generated from stimulated recall procedures to populate the framework; 3) existing theory was combined with empirical evidence to generate a set of concepts that offer explanations for the coaches’ decision-making behaviour. Findings revealed that NDM offered a suitable framework to apply to coaches’ decision-making behaviour. This behaviour was guided by the emergence of a slow, interactive script that evolves through a process of pattern recognition and/or problem framing. This revealed ‘key attractors’ that formed the initial catalyst and the potential necessity for the coach to make a decision through the breaching of a ‘threshold’. These were the critical factors for coaches’ interventions.


Author(s):  
David Mendonça ◽  
William A. Wallace ◽  
Barbara Cutler ◽  
James Brooks

AbstractLarge-scale disasters can produce profound disruptions in the fabric of interdependent critical infrastructure systems such as water, telecommunications and electric power. The work of post-disaster infrastructure restoration typically requires information sharing and close collaboration across these sectors; yet – due to a number of factors – the means to investigate decision making phenomena associated with these activities are limited. This paper motivates and describes the design and implementation of a computer-based synthetic environment for investigating collaborative information seeking in the performance of a (simulated) infrastructure restoration task. The main contributions of this work are twofold. First, it develops a set of theoretically grounded measures of collaborative information seeking processes and embeds them within a computer-based system. Second, it suggests how these data may be organized and modeled to yield insights into information seeking processes in the performance of a complex, collaborative task. The paper concludes with a discussion of implications of this work for practice and for future research.


Sign in / Sign up

Export Citation Format

Share Document