scholarly journals Neurotoxic Effects of Local Anesthetics on Developing Motor Neurons in a Rat Model

2021 ◽  
Vol 10 (5) ◽  
pp. 901
Author(s):  
Chang-Hoon Koo ◽  
Jiseok Baik ◽  
Hyun-Jung Shin ◽  
Jin-Hee Kim ◽  
Jung-Hee Ryu ◽  
...  

Neurotoxic effects of local anesthetics (LAs) on developing motor neurons have not been documented. We investigated the neurotoxic effects of LAs on developing motor neurons in terms of cell viability, cytotoxicity, reactive oxygen species (ROS), and apoptosis. Embryonic spinal cord motor neurons were isolated from Sprague-Dawley rat fetuses and exposed to one of the three LAs—lidocaine, bupivacaine, or ropivacaine—at concentrations of 1, 10, 100, or 1000 µM. The exposure duration was set to 1 or 24 h. The neurotoxic effects of LAs were determined by evaluating the following: cell viability, cytotoxicity, ROS production, and apoptosis. In the 1-h exposure group, the motor neurons exposed to lidocaine and bupivacaine had reduced cell viability and increased cytotoxicity, ROS, and apoptosis in a concentration-dependent manner. Lidocaine showed the highest toxicity, followed by bupivacaine. In the 24-h exposure group, all three LAs showed significant effects (decreased cell viability and increased cytotoxicity, ROS, and apoptosis) on the motor neurons in a concentration-dependent manner. The neurotoxic effects of lidocaine were greater than those of bupivacaine and ropivacaine. Ropivacaine appeared to have the least effect on motor neurons. This study identified the neurotoxic effects of lidocaine and bupivacaine on developing spinal cord motor neurons.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Sheng-Yu Cui ◽  
Wei Zhang ◽  
Zhi-Ming Cui ◽  
Hong Yi ◽  
Da-Wei Xu ◽  
...  

Abstract Background Spinal cord injury (SCI) is associated with health burden both at personal and societal levels. Recent assessments on the role of lncRNAs in SCI regulation have matured. Therefore, to comprehensively explore the function of lncRNA LEF1-AS1 in SCI, there is an urgent need to understand its occurrence and development. Methods Using in vitro experiments, we used lipopolysaccharide (LPS) to treat and establish the SCI model primarily on microglial cells. Gain- and loss of function assays of LEF1-AS1 and miR-222-5p were conducted. Cell viability and apoptosis of microglial cells were assessed via CCK8 assay and flow cytometry, respectively. Adult Sprague-Dawley (SD) rats were randomly divided into four groups: Control, SCI, sh-NC, and sh-LEF-AS1 groups. ELISA test was used to determine the expression of TNF-α and IL-6, whereas the protein level of apoptotic-related markers (Bcl-2, Bax, and cleaved caspase-3) was assessed using Western blot technique. Results We revealed that LncRNA LEF1-AS1 was distinctly upregulated, whereas miR-222-5p was significantly downregulated in LPS-treated SCI and microglial cells. However, LEF1-AS1 knockdown enhanced cell viability, inhibited apoptosis, as well as inflammation of LPS-mediated microglial cells. On the contrary, miR-222-5p upregulation decreased cell viability, promoted apoptosis, and inflammation of microglial cells. Mechanistically, LEF1-AS1 served as a competitive endogenous RNA (ceRNA) by sponging miR-222-5p, targeting RAMP3. RAMP3 overexpression attenuated LEF1-AS1-mediated protective effects on LPS-mediated microglial cells from apoptosis and inflammation. Conclusion In summary, these findings ascertain that knockdown of LEF1-AS1 impedes SCI progression via the miR-222-5p/RAMP3 axis.


2003 ◽  
Vol 94 (5) ◽  
pp. 1813-1820 ◽  
Author(s):  
Shin Terada ◽  
Isao Muraoka ◽  
Izumi Tabata

The purpose of the present investigation was to establish a method for estimating intracellular Ca2+ concentrations ([Ca2+]i) in isolated rat epitrochlearis muscles. Epitrochlearis muscles excised from 4-wk-old male Sprague-Dawley rats were loaded with a fluorescent Ca2+indicator, fura 2-AM, for 60–90 min at 35°C in oxygenated Krebs-Henseleit buffer. After fura 2 loading and subsequent 20-min incubation, the intensities of 500-nm fluorescence, induced by 340- and 380-nm excitation lights (Ftotal340 and Ftotal380), were measured. The fluorescences specific to fura-2 (Ffura 2340 and Ffura 2380) were calculated by subtracting the non-fura 2-specific component from Ftotal340 and Ftotal380, respectively. The ratio of Ffura 2340 to Ffura 2380 was calculated as R, and the change in the ratio from the baseline value (ΔR) was used as an index of the change in [Ca2+]i. In resting muscle, ΔR was stable for 60 min. Incubation for 20 min with caffeine (3–10 mM) significantly increased ΔR in a concentration-dependent manner. Incubation with hypoxic Krebs-Henseleit buffer for 10–60 min significantly elevated ΔR, depending on the duration of the incubation. Incubation with 50 μM N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide for 20 min significantly elevated ΔR ( P < 0.05). No significant increases in ΔR were observed during incubation for 20 min with 2 mM 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside or with 2 mU/ml insulin. These results demonstrated that, by using the fura 2-AM fluorescence method, the changes in [Ca2+]i can be monitored in the rat epitrochlearis muscle and suggest that the method can be utilized to observe quantitative information regarding [Ca2+]i that may be involved in contraction- and hypoxia-stimulated glucose transport activity in skeletal muscle.


Author(s):  
Elham Hoveizi ◽  
Fatemeh Fakharzadeh Jahromi

Background: The development of effective anticancer drugs is a significant health issue. Previous studies showed that members of the benzimidazole family have anticancer effects on several cancers Objectives: The present study investigated the cytotoxic effect of flubendazole on A549 human lung cancer cells. Methods: The A549 cells were treated with flubendazole at 1, 2, 5, and 10 µM concentrations for three days. Cell viability was measured by the MTT assay and Acridine orange staining. Also, the expressions of P62 and Beclin -1 were analyzed by qRT-PCR analysis. Results: Cell viability of A549 cells, in a concentration-dependent manner, showed significant differences between the treatment and control groups, and the IC50 value was determined to be 2 µM. Also, flubendazole reduced the expression of P62 and increased the expression of Beclin 1 in treated cells. Conclusions: Flubendazole induces cell death in A549 cells in a dose and time-dependent manner and can offer new factors in lung cancer therapeutic strategies.


Author(s):  
Berenice Aranda-Cuevas ◽  
Jorge Tamayo- Cortez ◽  
Lourdes Vargas y Vargas ◽  
Ignacio Islas- Flores ◽  
Víctor Arana- Argáez ◽  
...  

The present study evaluates the immunomodulatory effect of high molecular weight fractions of Aloe vera polysaccharides harvested during the dry season (March-April) and the rainy season (August-September). Peritoneal macrophages (MΦs) secluded from Balb/c mice underwent treatment with A. vera leaves extract and acemannan standard (the major component found in A. vera) and stimulated with lipopolysaccharides (LPS). Macrophage cell viability was assessed by the 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide method. Phagocytic activity was also evaluated in peritoneal macrophages, such as the production of nitric oxide and interleukin 6 (IL-6). In the results, found that the A. vera polysaccharides harvested during the rainy season stimulated the phagocytic activity with greater intensity than dry season and improvement NO and IL-6 production. No cytotoxic effect was found on cell viability and they cause a significant proliferative effect on macrophages in a concentration-dependent manner. It can be concluded that the A. vera polysaccharides harvested during the rainy season possessed a stronger immunostimulatory effect compared to the extracts from leaves obtained during dry seasons in a concentration-dependent manner without aff at the cell viability of macrophages.


Development ◽  
1999 ◽  
Vol 126 (19) ◽  
pp. 4201-4212 ◽  
Author(s):  
H. Saueressig ◽  
J. Burrill ◽  
M. Goulding

During early development, multiple classes of interneurons are generated in the spinal cord including association interneurons that synapse with motor neurons and regulate their activity. Very little is known about the molecular mechanisms that generate these interneuron cell types, nor is it known how axons from association interneurons are guided toward somatic motor neurons. By targeting the axonal reporter gene τ-lacZ to the En1 locus, we show the cell-type-specific transcription factor Engrailed-1 (EN1) defines a population of association neurons that project locally to somatic motor neurons. These EN1 interneurons are born early and their axons pioneer an ipsilateral longitudinal projection in the ventral spinal cord. The EN1 interneurons extend axons in a stereotypic manner, first ventrally, then rostrally for one to two segments where their axons terminate close to motor neurons. We show that the growth of EN1 axons along a ventrolateral pathway toward motor neurons is dependent on netrin-1 signaling. In addition, we demonstrate that En1 regulates pathfinding and fasciculation during the second phase of EN1 axon growth in the ventrolateral funiculus (VLF); however, En1 is not required for the early specification of ventral interneuron cell types in the embryonic spinal cord.


2015 ◽  
Vol 113 (5) ◽  
pp. 1598-1615 ◽  
Author(s):  
Samira P. Bandaru ◽  
Shujun Liu ◽  
Stephen G. Waxman ◽  
Andrew M. Tan

Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI.


2011 ◽  
Vol 8 (3) ◽  
pp. 1451-1455
Author(s):  
Ramalingam Mahesh ◽  
Hyo Won Jung ◽  
Jun Hong Park ◽  
Yong-Ki Park

Ostericum koreanummaximowicz (Umbelliferae), a medicinal herb in Korean Oriental Medicine, has been applied to treat cold, headache, neuralgia and arthralgia. The ethyl acetate fraction ofO. koreanumroot was subjected toin vitroantioxidant activity with different methods for free radical scavenging activities. In addition, the cell viability and nitric oxide release assays were performed here for the first time in neuroblastoma (Neuro-2a) cell cultures. Among all the tested methods, the ethyl acetate fraction was expressed very active, exhibiting a good Trolox equivalent values and IC50, comparable to that of the commercial antioxidants, Trolox and ascorbic acid, respectively. The results showed that there was a reduction of cell viability by the fraction in a concentration dependent manner. These results suggest thatO. koreanumshows good antioxidant activitiesin vitroby inhibiting free radicals. These findings provide a rationale for thein vivotesting. Also, the major constituents behind the antioxidant mechanisms of this fraction warrant further study.


2011 ◽  
Vol 300 (1) ◽  
pp. C198-C209 ◽  
Author(s):  
Jonathan E. Campbell ◽  
Ashley J. Peckett ◽  
Anna M. D'souza ◽  
Thomas J. Hawke ◽  
Michael C. Riddell

Glucocorticoids have been proposed to be both adipogenic and lipolytic in action within adipose tissue, although it is unknown whether these actions can occur simultaneously. Here we investigate both the in vitro and in vivo effects of corticosterone (Cort) on adipose tissue metabolism. Cort increased 3T3-L1 preadipocyte differentiation in a concentration-dependent manner, but did not increase lipogenesis in adipocytes. Cort increased lipolysis within adipocytes in a concentration-dependent manner (maximum effect at 1–10 μM). Surprisingly, removal of Cort further increased lipolytic rates (∼320% above control, P < 0.05), indicating a residual effect on basal lipolysis. mRNA and protein expression of adipose triglyceride lipase and phosphorylated status of hormone sensitive lipase (Ser563/Ser660) were increased with 48 h of Cort treatment. To test these responses in vivo, Sprague-Dawley rats were subcutaneously implanted with wax pellets with/without Cort (300 mg). After 10 days, adipose depots were removed and cultured ex vivo. Both free fatty acids and glycerol concentrations were elevated in fed and fasting conditions in Cort-treated rats. Despite increased lipolysis, Cort rats had more visceral adiposity than sham rats (10.2 vs. 6.9 g/kg body wt, P < 0.05). Visceral adipocytes from Cort rats were smaller and more numerous than those in sham rats, suggesting that adipogenesis occurred through preadipocyte differentiation rather than adipocyte hypertrophy. Visceral, but not subcutaneous, adipocyte cultures from Cort-treated rats displayed a 1.5-fold increase in basal lipolytic rates compared with sham rats ( P < 0.05). Taken together, our findings demonstrate that chronic glucocorticoid exposure stimulates both lipolysis and adipogenesis in visceral adipose tissue but favors adipogenesis primarily through preadipocyte differentiation.


2004 ◽  
Vol 286 (5) ◽  
pp. H1910-H1915 ◽  
Author(s):  
Sergey V. Brodsky ◽  
Fan Zhang ◽  
Alberto Nasjletti ◽  
Michael S. Goligorsky

Endothelial cell dysfunction (ECD) is emerging as the common denominator for diverse and highly prevalent cardiovascular diseases. Recently, an increased number of procoagulant circulating endothelial microparticles (EMPs) has been identified in patients with acute myocardial ischemia, preeclampsia, and diabetes, which suggests that these particles represent a surrogate marker of ECD. Our previous studies showed procoagulant potential of endothelial microparticles and mobilization of microparticles by PAI-1. The aim of this study was to test the effects of isolated EMPs on the vascular endothelium. EMPs impaired ACh-induced vasorelaxation and nitric oxide production by aortic rings obtained from Sprague-Dawley rats in a concentration-dependent manner. This effect was accompanied by increased superoxide production by aortic rings and cultured endothelial cells that were coincubated with EMPs and was inhibited by a SOD mimetic and blunted by an endothelial nitric oxide synthase inhibitor. Superoxide was also produced by isolated EMP. In addition, p22(phox) subunit of NADPH-oxidase was detected in EMP. Our data strongly suggest that circulating EMPs directly affect the endothelium and thus not only act as a marker for ECD but also aggravate preexisting ECD.


Sign in / Sign up

Export Citation Format

Share Document