scholarly journals Potential Effects of CXCL9 and CCL20 on Cardiac Fibrosis in Patients with Myocardial Infarction and Isoproterenol-Treated Rats

2019 ◽  
Vol 8 (5) ◽  
pp. 659 ◽  
Author(s):  
Chao-Feng Lin ◽  
Chih-Jou Su ◽  
Jia-Hong Liu ◽  
Shui-Tien Chen ◽  
Han-Li Huang ◽  
...  

The chemokines CXCL9 and CCL20 have been reported to be associated with ventricular dysfunction. This study was aimed to investigate the effects of CXCL9/CCL20 on cardiac fibrosis following myocardial infarction (MI). Blood samples of patients with MI were obtained to determine the serum CXCL9, CCL20, tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β). The expression of CXCL9 and CCL20 in hypoxia-incubated H9c2 cells and TNF-α/TGF-β-activated peripheral blood mononuclear cells (PBMCs) were examined. The experimental MI of rats was produced by the intraperitoneal injection of isoproterenol (ISO) (85 mg/kg/day) for two consecutive days. The growth and migration of CXCL9/CCL20-incubated cardiac fibroblasts in vitro were evaluated. TNF-α/TGF-β-activated PBMCs showed an enhanced expression of CXCL9 and CCL20, while hypoxic H9c2 cells did not. Patients with MI had significantly enhanced levels of serum TGF-β and CXCL9 compared to healthy subjects. ISO-treated rats had increased serum CXCL9 levels and marked cardiac fibrosis compared to control rats. The trend of increased serum CCL20 in patients with MI and ISO-treated rats was not significant. CXCL9-incubated cardiac fibroblasts showed enhanced proliferation and migration. The findings of this study suggest that an enhanced expression of CXCL9 following MI might play a role in post-MI cardiac fibrosis by activating cardiac fibroblasts.

2010 ◽  
Vol 19 (4) ◽  
pp. 369-386 ◽  
Author(s):  
M. Bouchentouf ◽  
P. Paradis ◽  
K. A. Forner ◽  
J. Cuerquis ◽  
M. N. Boivin ◽  
...  

In this study, we have investigated the hypothesis that previously reported beneficial effect of peripheral blood mononuclear cells cultured under angiogenic conditions on cardiovascular function following ischemia is not limited to EPCs but also to monocytes contained therein. We first purified and analyzed the phenotype and secretome of human and murine blood monocytes cultured under angiogenic conditions (named MDs for monocyte derivatives) and tested their effect in a mouse model of myocardial infarction (MI). FACS analysis of MDs shows that these cells express mature endothelial cell markers and that their proliferative capacity is virtually absent, consistent with their end-differentiated monocytic ontogeny. MDs secreted significant levels of HGF, IGF-1, MCP-1, and sTNFR-1 relative to their monocyte precursors. MDs were unable to form vascular networks in vitro when cultured on matrix coated flasks. Treatment of murine HL-1 cardiomyocyte cell line with MD-conditioned medium reduced their death induced by TNF-α, staurosporine, and oxidative stress, and this effect was dependent upon MD-derived sTNFR-1, HGF, and IGF-1. We further demonstrate that MD secretome promoted endothelial cell proliferation and capacity to form vessels in vitro and this was dependent upon MD-derived MCP-1, HGF, and IGF-1. Echocardiography analysis showed that MD myocardial implantation improved left ventricle fractional shortening of mouse hearts following MI and was associated with reduced myocardial fibrosis and enhancement of angiogenesis. Transplanted MDs and their secretome participate in preserving functional myocardium after ischemic insult and attenuate pathological remodeling.


1999 ◽  
Vol 67 (9) ◽  
pp. 4977-4981 ◽  
Author(s):  
Douglas J. Perkins ◽  
Peter G. Kremsner ◽  
Daniela Schmid ◽  
Mary A. Misukonis ◽  
Meghan A. Kelly ◽  
...  

ABSTRACT Plasmodium falciparum malaria is an important cause of morbidity and mortality in children. Factors that determine the development of mild versus severe malaria are not fully understood. Since host-derived nitric oxide (NO) has antiplasmodial properties, we measured NO production and NO synthase (NOS) activity in peripheral blood mononuclear cells (PBMC) from healthy Gabonese children with a history of prior mild malaria (PMM) or prior severe malaria (PSM) caused by P. falciparum. The PMM group had significantly higher levels of NOS activity in freshly isolated PBMC and higher NO production and NOS activity in cultured PBMC. The investigation of NO-modulating cytokines (e.g., interleukin 12, gamma interferon, tumor necrosis factor alpha [TNF-α], and transforming growth factor β1) as an explanation for differing levels of NOS activity revealed that plasma levels of TNF-α were significantly higher in the PSM group. Our results suggest that NOS/ NO and TNF-α are markers for prior disease severity and important determinants of resistance to malaria.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Yong Sook Kim ◽  
Hyang Hee Cho ◽  
Ju Hee Jun ◽  
Dong Im Cho ◽  
Meeyoung Cho ◽  
...  

Background: Inhibitor of NF-κB kinase (IKK), an upstream of nuclear factor-kappa B (NF-κB), is a critical modulator for pathophysiological inflammation. IKKε is a non-classical IKK and has been studied in infectious diseases and cancers. However, the role of IKKε in a myocardial infarction (MI) has not been addressed. Methods and Results: In this study, we used IKKε knockout (KO) mice to induce MI by coronary artery ligation. The IKKε KO group showed poor early survival rate, large cardiac fibrosis (14.7±4.8% in KO vs. 31.1±10.2% in WT, p <0.05), and low fractional shortening (13.47±1.21% in KO vs. 16.36±4.46% in WT, p <0.05) compared with WT group. Next, we investigated the inflammatory responses and found that inflammatory markers such as inducible nitric oxide synthase (iNOS) and CD80 were much higher in both cardiac macrophages and bone marrow-derived macrophages (BMDM) in the IKKε KO group than in the wild type (WT) group. To explore the responsible mediator, we performed phosphorylated protein array and found phosphorylated p38 was significantly downregulated in the IKKε knockout BMDM. Conversely, both knockdown of p38 by siRNA and inhibition of p38 by SB203580 treatment in RAW264.7 cells upregulated iNOS. More interestingly, IKKε deficient cardiac fibroblasts showed highly accumulated nuclear p53 and exhibited immature differentiation. The levels of myofibroblast markers containing α-smooth muscle actin, periostin, and transforming growth factor-β1 were lower, and functional contractility was substantially impaired in the cardiac fibroblasts isolated from IKKε KO mice. Conclusion: Our data showed excessive inflammation was associated with p38 inactivation in macrophages and pathological fibrosis was resulted from immature myofibroblast phenotype with p53 upregulation. Collectively, IKKε is involved in the control of inflammation resolution and wound healing process in the infarcted myocardium.


Cardiology ◽  
2016 ◽  
Vol 134 (3) ◽  
pp. 340-346 ◽  
Author(s):  
Jianquan Zhao ◽  
Han Lei

Background: The proliferation and migration of cardiac fibroblasts are critical for the progress of cardiac fibrosis. Tripartite motif protein 72 (Trim72), also known as MG53, mediates the dynamic process of membrane fusion and exocytosis in striated muscle. However, the role of Trim72 in the proliferation and migration of cardiac fibroblasts is unknown. Methods: In the present study, we used small interference RNA (siRNA) to silence Trim72 and then investigated the effects of Trim72 on cardiac fibroblast proliferation and migration, which were activated during cardiac remodeling after myocardial infarction. Cardiac fibroblasts were isolated from 2- to 3-day-old neonatal Sprague-Dawley rats and transfected with siRNA. A cell-counting assay was used to determine the proliferation of cardiac fibroblasts. A Boyden chamber assay was performed to determine the migration of cardiac fibroblasts. Results: Our study has, for the first time, demonstrated that Trim72 regulates the cell proliferation and migration of rat cardiac fibroblasts. Furthermore, the data from the gene expression profile microarray analysis indicate that Trim72 depletion can cause downregulation of the transforming growth factor (TGF)-β signaling pathway, suggesting that Trim72 regulates the proliferation and migration of cardiac fibroblasts probably via the TGF-β signaling pathway. Conclusions: We have demonstrated that Trim72 might play a pivotal role in the proliferation of neonatal rat cardiac fibroblasts, which could be a potential target for the treatment of cardiac fibrosis. However, the involvement of other signaling pathways and factors in the formation of cardiac fibrosis cannot be excluded.


Blood ◽  
1997 ◽  
Vol 89 (6) ◽  
pp. 1931-1938 ◽  
Author(s):  
Heidrun Lindner ◽  
Ernst Holler ◽  
Birgit Ertl ◽  
Gabriele Multhoff ◽  
Manuela Schreglmann ◽  
...  

Abstract Human umbilical vein endothelial cells (HUVECs) undergo programmed cell death (apoptosis) after coculture with peripheral blood mononuclear cells (PBMCs) preactivated by ionizing radiation (IR) or by bacterial endotoxin (lipopolysaccharide [LPS]). Cell-to-cell contact-mediated apoptosis could be blocked in both cases by anti–tumor necrosis factor-α (anti–TNF-α) monoclonal antibody MAK195 and also by the antagonistic cytokine interleukin-10 (IL-10). Cell-free PBMC supernatants from both preactivation treatments were sufficient to trigger endothelial apoptosis. In contrast, MAK195 and IL-10 were found to be ineffective in this system, suggesting a TNF-α–independent mechanism. However, N-Acetylcystein, an antioxidant, fully abrogated programmed cell death mediated by the supernatant of IR-treated PBMCs, but not of LPS-treated PBMCs. Additionally, we found that coculture and cell-free supernatants of preactivated as well as untreated PBMCs caused cell cycle arrest in proliferating EC in G0/1 , which could be relieved by IL-10, but not by anti–TNF-α. Further analysis showed that transforming growth factor-β, which was constitutively expressed in the supernatant of PBMCs, namely lymphocytes, was responsible for this. These data suggest a pathophysiologic model in which preactivated PBMCs cause EC damage and may prevent blood vessel repair by arresting the proliferation of ECs. This could contribute to the understanding of various clinical endothelial complications that occur after irradiation as well as in cases of endotoxemia or related inflammatory states.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jing Yang ◽  
Bo Wang ◽  
Na Li ◽  
Qingqing Zhou ◽  
Wenhui Zhou ◽  
...  

The incidence of cardiac dysfunction after myocardial infarction (MI) continues to increase despite advances in treatment. Excessive myocardial fibrosis plays a vital role in the development of adverse cardiac remodeling and deterioration of cardiac function. Understanding the molecular and cellular mechanism of the fibrosis process and developing effective therapeutics are of great importance.Salvia miltiorrhizaandCarthamus tinctoriusextract (SCE) is indicated for angina pectoris and other ischemic cardiovascular diseases in China. SCE has been shown to inhibit the platelet activation and aggregation, ameliorate ROS-induced myocardial necrosis by inhibiting mitochondrial permeability transition pore opening, and promote angiogenesis by upregulating the expression of vascular endothelial growth factor (VEGF). However, whether SCE has effect on cardiac fibrosis after MI is not fully clear. Here, a mouse model of MI was established to observe the effect of SCE upon survival, cardiac function, myocardial fibrosis, and inflammation. Quantitative PCR and western blot assays were used to determine the expression of genes related to transforming growth factor-β(TGF-β) cascade and inflammatory responsesin vivo. Additionally, the effects of SCE upon the collagen production, TGF-β/Smad3 (SMAD family member 3) signaling, and the levels of histone methylation in primary cardiac fibroblasts were detected. We found that SCE treatment significantly improved survival and left ventricular function in mice after MI. Inhibition of inflammation and fibrosis, as well as decreased expression of Smad3, was observed with SCE treatment. In TGF-β-stimulated cardiac fibroblasts, SCE significantly decreased the expression of collagen,α-smooth muscle actin (α-SMA), and Smad3. Furthermore, SCE treatment downregulated the levels of H3K4 trimethylation (H3K4me3) and H3K36 trimethylation (H3K36me3) at theSmad3promoter region of cardiac fibroblasts, leading to inhibition ofSmad3transcription. Our findings suggested that SCE prevents myocardial fibrosis and adverse remodeling after MI with a novel mechanism of suppressing histone methylation of theSmad3promoter and its transcription.


2005 ◽  
Vol 289 (3) ◽  
pp. H982-H991 ◽  
Author(s):  
Fatiha Bouzeghrane ◽  
Dieter P. Reinhardt ◽  
Tim L. Reudelhuber ◽  
Gaétan Thibault

Fibrillin-1 localization in the myocardium and the modulation of its expression in cardiac fibrosis were examined. In normal rat hearts, fibrillin-1 was abundant throughout the myocardium as thin fibers that crossed over the perimysium and around arteries. After cardiac fibrosis was induced in rats by either 14-day ANG II infusion or 21-day DOCA-salt treatment [a high endothelin-1 (ET-1) model], fibrillin-1 immunostaining was stronger in the interstitium (2.8-fold and 4.4-fold increases, respectively, in each model), extended between myocytes, and accumulated in microscopic scars and in the perivascular area of both ventricles. mRNA analysis confirmed its enhanced ventricular expression in both groups of rats (2.5-fold and 6.6-fold increments, respectively, in each model). In 1B normotensive and 2C hypertensive transgenic mice, two lines expressing an ANG II fusion protein in cardiac myocytes, strong fibrillin-1 immunoreactivity was observed in the interstitium and around arteries (3.7-fold and 7-fold increases, respectively). ANG II and transforming growth factor-β1 enhanced fibrillin-1 synthesis by cardiac fibroblasts. Some fibrillin-1 fragments interacted with RGD-dependent integrins, including α8β1-integrin, of cardiac fibroblasts but not necessarily through the RGD motif. Our findings illustrate that fibrillin-1 is an important constituent of the myocardium. In vitro and in vivo evidence suggests that ANG II can directly induce fibrillin-1 expression in cardiac fibroblasts. This protein can thus contribute to reactive and reparative processes.


2020 ◽  
Vol 21 (10) ◽  
pp. 3685 ◽  
Author(s):  
Adelina Curaj ◽  
David Schumacher ◽  
Mihaela Rusu ◽  
Mareike Staudt ◽  
Xiaofeng Li ◽  
...  

Aim: Recruitment of neutrophils to the heart following acute myocardial infarction (MI) initiates inflammation and contributes to adverse post-infarct left ventricular (LV) remodeling. However, therapeutic inhibition of neutrophil recruitment into the infarct zone has not been beneficial in MI patients, suggesting a possible dual role for neutrophils in inflammation and repair following MI. Here, we investigate the effect of neutrophils on cardiac fibroblast function following MI. Methods and Results: We found that co-incubating neutrophils with isolated cardiac fibroblasts enhanced the production of provisional extracellular matrix proteins and reduced collagen synthesis when compared to control or co-incubation with mononuclear cells. Furthermore, we showed that neutrophils are required to induce the transient up-regulation of transforming growth factor (TGF)-ß1 expression in fibroblasts, a key requirement for terminating the pro-inflammatory phase and allowing the reparatory phase to form a mature scar after MI. Conclusion: Neutrophils are essential for both initiation and termination of inflammatory events that control and modulate the healing process after MI. Therefore, one should exercise caution when testing therapeutic strategies to inhibit neutrophil recruitment into the infarct zone in MI patients.


2017 ◽  
Vol 121 (6) ◽  
pp. 617-627 ◽  
Author(s):  
Sheng-an Su ◽  
Du Yang ◽  
Yue Wu ◽  
Yao Xie ◽  
Wei Zhu ◽  
...  

Rationale: Cardiac fibrosis is a common feature in left ventricular remodeling that leads to heart failure, regardless of the cause. EphrinB2 (erythropoietin-producing hepatoma interactor B2), a pivotal bidirectional signaling molecule ubiquitously expressed in mammals, is crucial in angiogenesis during development and disease progression. Recently, EphrinB2 was reported to protect kidneys from injury-induced fibrogenesis. However, its role in cardiac fibrosis remains to be clarified. Objective: We sought to determine the role of EphrinB2 in cardiac fibrosis and the underlying mechanisms during the pathological remodeling process. Methods and Results: EphrinB2 was highly expressed in the myocardium of patients with advanced heart failure, as well as in mouse models of myocardial infarction and cardiac hypertrophy induced by angiotensin II infusion, which was accompanied by myofibroblast activation and collagen fiber deposition. In contrast, intramyocardial injection of lentiviruses carrying EphrinB2-shRNA ameliorated cardiac fibrosis and improved cardiac function in mouse model of myocardial infarction. Furthermore, in vitro studies in cultured cardiac fibroblasts demonstrated that EphrinB2 promoted the differentiation of cardiac fibroblasts into myofibroblasts in normoxic and hypoxic conditions. Mechanistically, the profibrotic effect of EphrinB2 on cardiac fibroblast was determined via activating the Stat3 (signal transducer and activator of transcription 3) and TGF-β (transforming growth factor-β)/Smad3 (mothers against decapentaplegic homolog 3) signaling. We further determined that EphrinB2 modulated the interaction between Stat3 and Smad3 and identified that the MAD homology 2 domain of Smad3 and the coil–coil domain and DNA-binding domain of Stat3 mediated the interaction. Conclusions: This study uncovered a previously unrecognized profibrotic role of EphrinB2 in cardiac fibrosis, which is achieved through the interaction of Stat3 with TGF-β/Smad3 signaling, implying a promising therapeutic target in fibrotic diseases and heart failure.


2020 ◽  
Vol 18 (3) ◽  
pp. 194-200
Author(s):  
Maryam Moradi ◽  
Alireza Tabibzadeh ◽  
Davod Javanmard ◽  
Saied Ghorbani ◽  
Farah Bokharaei-Salim ◽  
...  

Background: Coinfection of Hepatitis C virus (HCV) with human immunodeficiency virus (HIV) has a higher risk of mortality than HCV or HIV monoinfection. HCV and HIV infections are specified by systemic inflammation, but the inflammation process in HCV/HIV coinfection is much complicated and is not well characterized. Objective: The aim of this study was to analyze the expression of TLR-3, TLR-7, IL-10, IFN-1 (IFN-α, IFN-β), and TNF-α in HIV, HCV and HIV/HCV co-infected patients. Methods: Forty-five patients including HIV group (n=15), HCV group (n=15), HIV/HCV coinfection group (n=15) and healthy control group (n=15) participated. Peripheral blood mononuclear cells (PBMCs) were obtained. PBMC-RNA, HCV and HIV RNA were extracted from all subjects and cDNA was synthesized. The viral load analyzed by reverse transcription-quantitative PCR (RT-qPCR), and the expression levels of IFN-α, IFN-β, TLR-3, TLR-7, TNF, and IL-10 mRNA were quantified in PBMCs. Results: The levels of IFN-I, IL-10, and TNF-α were overexpressed in all patients’ groups (P<0.05), TLR-7 was upregulated in all groups, but this upregulation was not statistically significant (p>0.05). TLR-3 showed a decrease in all patient groups (P<0.05). The statistical analysis demonstrated that TLR-3 has a negative correlation with HIV load, whereas other genes positively correlated with HIV load. In addition, TLR-3, TNF-α, and IFN-I were negatively correlated with HCV load, whereas TLR-7 and IL-10 s were positively correlated with HCV load. Conclusion: Our results showed a significant relationship between the expression level of innate immunity genes and inflammation in HCV, HIV, and HIV/HCV coinfected patients.


Sign in / Sign up

Export Citation Format

Share Document