Abstract 430: Immature Cardiac Fibroblasts With Upregulated P53 Contributed to Fibrosis in Ikke Deficient Mouse Myocardial Infarction Model

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Yong Sook Kim ◽  
Hyang Hee Cho ◽  
Ju Hee Jun ◽  
Dong Im Cho ◽  
Meeyoung Cho ◽  
...  

Background: Inhibitor of NF-κB kinase (IKK), an upstream of nuclear factor-kappa B (NF-κB), is a critical modulator for pathophysiological inflammation. IKKε is a non-classical IKK and has been studied in infectious diseases and cancers. However, the role of IKKε in a myocardial infarction (MI) has not been addressed. Methods and Results: In this study, we used IKKε knockout (KO) mice to induce MI by coronary artery ligation. The IKKε KO group showed poor early survival rate, large cardiac fibrosis (14.7±4.8% in KO vs. 31.1±10.2% in WT, p <0.05), and low fractional shortening (13.47±1.21% in KO vs. 16.36±4.46% in WT, p <0.05) compared with WT group. Next, we investigated the inflammatory responses and found that inflammatory markers such as inducible nitric oxide synthase (iNOS) and CD80 were much higher in both cardiac macrophages and bone marrow-derived macrophages (BMDM) in the IKKε KO group than in the wild type (WT) group. To explore the responsible mediator, we performed phosphorylated protein array and found phosphorylated p38 was significantly downregulated in the IKKε knockout BMDM. Conversely, both knockdown of p38 by siRNA and inhibition of p38 by SB203580 treatment in RAW264.7 cells upregulated iNOS. More interestingly, IKKε deficient cardiac fibroblasts showed highly accumulated nuclear p53 and exhibited immature differentiation. The levels of myofibroblast markers containing α-smooth muscle actin, periostin, and transforming growth factor-β1 were lower, and functional contractility was substantially impaired in the cardiac fibroblasts isolated from IKKε KO mice. Conclusion: Our data showed excessive inflammation was associated with p38 inactivation in macrophages and pathological fibrosis was resulted from immature myofibroblast phenotype with p53 upregulation. Collectively, IKKε is involved in the control of inflammation resolution and wound healing process in the infarcted myocardium.

2021 ◽  
Vol 22 (4) ◽  
pp. 1861
Author(s):  
Jemima Seidenberg ◽  
Mara Stellato ◽  
Amela Hukara ◽  
Burkhard Ludewig ◽  
Karin Klingel ◽  
...  

Background: Pathological activation of cardiac fibroblasts is a key step in development and progression of cardiac fibrosis and heart failure. This process has been associated with enhanced autophagocytosis, but molecular mechanisms remain largely unknown. Methods and Results: Immunohistochemical analysis of endomyocardial biopsies showed increased activation of autophagy in fibrotic hearts of patients with inflammatory cardiomyopathy. In vitro experiments using mouse and human cardiac fibroblasts confirmed that blockade of autophagy with Bafilomycin A1 inhibited fibroblast-to-myofibroblast transition induced by transforming growth factor (TGF)-β. Next, we observed that cardiac fibroblasts obtained from mice overexpressing transcription factor Fos-related antigen 2 (Fosl-2tg) expressed elevated protein levels of autophagy markers: the lipid modified form of microtubule-associated protein 1A/1B-light chain 3B (LC3BII), Beclin-1 and autophagy related 5 (Atg5). In complementary experiments, silencing of Fosl-2 with antisense GapmeR oligonucleotides suppressed production of type I collagen, myofibroblast marker alpha smooth muscle actin and autophagy marker Beclin-1 in cardiac fibroblasts. On the other hand, silencing of either LC3B or Beclin-1 reduced Fosl-2 levels in TGF-β-activated, but not in unstimulated cells. Using a cardiac hypertrophy model induced by continuous infusion of angiotensin II with osmotic minipumps, we confirmed that mice lacking either Fosl-2 (Ccl19CreFosl2flox/flox) or Atg5 (Ccl19CreAtg5flox/flox) in stromal cells were protected from cardiac fibrosis. Conclusion: Our findings demonstrate that Fosl-2 regulates autophagocytosis and the TGF-β-Fosl-2-autophagy axis controls differentiation of cardiac fibroblasts. These data provide a new insight for the development of pharmaceutical targets in cardiac fibrosis.


Planta Medica ◽  
2017 ◽  
Vol 84 (02) ◽  
pp. 91-99 ◽  
Author(s):  
Yang Xiao ◽  
Wei Chang ◽  
Qing-Qing Wu ◽  
Xiao-Han Jiang ◽  
Ming-Xia Duan ◽  
...  

AbstractFibrosis is a key feature of various cardiovascular diseases and compromises cardiac systolic and diastolic performance. The lack of effective anti-fibrosis drugs is a major contributor to the increasing prevalence of heart failure. The present study was performed to investigate whether the iridoid aucubin alleviates cardiac fibroblast activation and its underlying mechanisms. Neonatal rat cardiac fibroblasts were incubated with aucubin (1, 10, 20, 50 µM) followed by transforming growth factor β1 (TGFβ1, 10 ng/mL) stimulation for 24 h. Fibrosis proliferation was measured by cell counting kit-8 assay. The differentiation of fibroblasts into myofibroblasts was determined by measuring the expression of α-smooth muscle actin. Then, the expressions levels of cardiac fibrosis-related proteins in myofibroblasts were analyzed by western blot and real-time PCR to confirm the anti-fibrosis effect of aucubin. As a result, aucubin suppressed TGFβ1-induced proliferation in fibroblasts and inhibited the TGFβ1-induced activation of fibroblasts to myofibroblasts. In addition, aucubin further attenuated fibrosis-related protein expression in myofibroblasts. Furthermore, this protective effect was related to increased adenosine 5′-monophosphate-activated protein kinase (AMPK) phosphorylation and decreased mammalian target of rapamycin (mTOR) phosphorylation, which was confirmed by an mTOR inhibitor (rapamycin), an AMPK agonist (AICAR) and an AMPKα inhibitor compound C. Collectively, our findings suggest that aucubin protects against TGFβ1-induced fibroblast proliferation, activation and function by regulating the AMPKα/mTOR signal axis.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Wei He ◽  
Lunan Zhang ◽  
Richard E Pratt ◽  
Victor J Dzau

Myocardial infarction and post-infarction remodeling with heart failure are the major cause of mortality and morbidity in the United States. We recently reported that intracardiac implantation of genetically engineered mesenchymal stem cell (MSC) overexpressing the Akt gene dramatically reduced the infarct size and restored cardiac functions in rodent hearts after coronary artery ligation. Further, we identified Secreted Frizzled Related Protein 2 (sfrp2) as a key factor released by Akt-MSC mediating myocardial survival and repair. However, the underlying mechanism remains elusive. Bone Morphogenetic Protein1 (BMP1)/Tolloid (TLD)-like metalloproteinases belong to a subgroup of astacin family and play key roles in the regulation of extracelluar matrix (ECM) formation and cardiac fibrosis. These proteases have procollagen C-proteinase (PCP) activities which are responsible for the cleavage of C-propeptides from procollagen precursors to produce mature collagen fibrils. In this report, we showed that three days following myocardial infarction in rats, both BMP1 protein expression and activity were upregulated in the infarcted left ventricle. Interestingly, we found recombinant sfrp2 could inhibit BMP1 activity in MI tissue samples as measured by an in vitro PCP activity assay. Furthermore, using purified recombinant proteins, we demonstrated that sfrp2, but not sfrp1 or sfrp3, inhibited BMP-1 activity in vitro. Moreover, purified sfrp2 could physically interact with BMP1 protein as shown by the co-immunoprecipitation assay. To provide further evidence that sfrp2 can interfere with collagen processing, we demonstrated that exogenously added sfrp2 interfered with procollagen processing in primary cultures of cardiac fibroblast culture medium. Similar results were obtained when these cells were transiently transfected with sfrp2 expressing plasmids. In summary, our data suggest that one of the molecular mechanisms underlying the cardioprotective and repair effects of sfrp2 protein on myocardial infarction is through the inhibition of BMP-1 activity. Therefore, sfrp2 has the potential clinical application as a novel anti-fibrotic reagent for the modulation of cardiac remodeling after acute myocardial infarction.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Tatsuro Kitahara ◽  
Yasuchika Takeishi ◽  
Tetsuro Shishido ◽  
Satoshi Suzuki ◽  
Shigehiko Kato ◽  
...  

High-mobility group box 1 (HMGB1) is a nuclear DNA-binding protein and is released from necrotic cells, inducing inflammatory responses and promoting tissue repair and angiogenesis. To test the hypothesis that HMGB1 enhances angiogenesis and restores cardiac dysfunction after myocardial infarction, we generated transgenic mouse with cardiac specific overexpression of HMGB1 (HMGB1-Tg) using α-myosin heavy chain (MHC) promoter. The left anterior descending coronary artery was ligated in HMGB1-Tg and wild-type littermate (Wt) mice. After coronary artery ligation, HMGB1 was released into circulation from the necrotic cardiomyocytes of HMGB1 overexpressing hearts. The size of myocardial infarction was smaller in HMGB1-Tg than in Wt mice (figure ). Echocardiography and cardiac catheterization demonstrated that cardiac remodeling and dysfunction after myocardial infarction were prevented in HMGB1-Tg mice compared to Wt mice. Furthermore, survival rate after myocardial infarction in HMGB1-Tg mice was higher than that in Wt mice (figure ). Immunohistochemical staining revealed that capillary and arteriole formations after myocardial infarction were enhanced in HMGB1-Tg mice. We demonstrated the first in vivo evidence that HMGB1 enhances angiogenesis, restores cardiac dysfunction, and improves survival after myocardial infarction. These results may provide a novel therapeutic approach for left ventricular dysfunction after myocardial infarction.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Indrajeet Rana ◽  
Andrew Kompa ◽  
Joanna Skommer ◽  
Suree Lekawanvijit ◽  
Darren J Kelly ◽  
...  

Introduction: A decline in renal function is a common consequence of myocardial infarction (MI) resulting in increased cardiovascular events, known as cardiorenal syndrome (CRS). Although molecular mechanisms contributing to CRS are not well understood, a role for elevated plasma levels of the uremic toxin indoxyl sulphate (IS) and increased fibrosis have been described. MicroRNAs are small endogenously transcribed regulatory RNAs that modulate gene expression and regulate many cardiac processes involved in cardiac dysfunction. Aim: Using a rat model we investigated whether MI leads to changes in expression of cardiac microRNA-21 and microRNA-29, both known to contribute to fibrosis. We also investigated the effect of lowering plasma uremic toxins on cardiac expression of these microRNAs. Methods: MI was induced by coronary artery ligation in male Sprague-Dawley rats. At 16 weeks cardiac function was measured prior to sacrifice. Cardiac tissues were assessed for molecular changes using real-time PCR, western blot analysis and histological methods. Results: MI significantly increased cardiac microRNA-21, collagen1A1, fibronectin-1 and TGFβ1 mRNA expression, as well as cardiac fibrosis and collagen 1 protein expression. Conversely, microRNA-29 expression was reduced in the heart (Table). Treatment with the AST-120 significantly reversed all these changes (Table). MicroRNA-21 levels significantly correlated with mRNA for TGF-β1 (P=0.049; r2=0.17) and its target genes collagen1A1 (P=0.004; r2=0.35) and fibronectin-1 (P=0.003; r2=0.52). MicroRNA-29b levels negatively and significantly correlated with TGF-β1 (P=0.017; r2=0.26) and collagen1A1 (P=0.048; r2=0.18) and fibronectin-1 (P=0.013; r2=0.29). Conclusions: We report a link between the beneficial effects of lowering circulating uremic toxins and microRNAs changes in the heart. Targeting microRNA’s may provide a therapeutic target for the treatment of CRS.


2016 ◽  
Vol 311 (6) ◽  
pp. R1243-R1254 ◽  
Author(s):  
Michael Bennardo ◽  
Faisal Alibhai ◽  
Elena Tsimakouridze ◽  
Nirmala Chinnappareddy ◽  
Peter Podobed ◽  
...  

Diurnal or circadian rhythms are fundamentally important for healthy cardiovascular physiology and play a role in timing of onset and tolerance to myocardial infarction (MI) in patients. Whether time of day of MI triggers different molecular and cellular responses that can influence myocardial remodeling is not known. This study was designed to test whether time of day of MI triggers different gene expression, humoral, and innate inflammatory responses that contribute to cardiac repair after MI. Mice were infarcted by left anterior descending coronary artery ligation (MI model) within a 2-h time window either shortly after lights on or lights off, and the early remodeling responses at 8 h postinfarction were examined. We found that sleep-MI preferentially triggers early expression of genes associated with inflammatory responses, whereas wake-MI triggers more genes associated with metabolic pathways and transcription/translation, by microarray analyses. Homozygous clock mutant mice exhibit altered diurnal gene expression profiles, consistent with their cycling before onset of MI. In the first 8 h, crucial for innate immune responses to MI, there are also significant differences in sleep-MI and wake-MI serum cytokine responses and in neutrophil infiltration to infarcted myocardium. By 1-wk post-MI, there are differences in survivorship between the sleep and wake MI mice that could be explained by the different molecular and cellular responses. Our whole body physiology, tissues, and cells exhibit endogenous daily rhythms, and understanding their role in triggering effective responses after MI could lead to new strategies to benefit patients with cardiovascular disease.


2019 ◽  
Vol 8 (5) ◽  
pp. 659 ◽  
Author(s):  
Chao-Feng Lin ◽  
Chih-Jou Su ◽  
Jia-Hong Liu ◽  
Shui-Tien Chen ◽  
Han-Li Huang ◽  
...  

The chemokines CXCL9 and CCL20 have been reported to be associated with ventricular dysfunction. This study was aimed to investigate the effects of CXCL9/CCL20 on cardiac fibrosis following myocardial infarction (MI). Blood samples of patients with MI were obtained to determine the serum CXCL9, CCL20, tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β). The expression of CXCL9 and CCL20 in hypoxia-incubated H9c2 cells and TNF-α/TGF-β-activated peripheral blood mononuclear cells (PBMCs) were examined. The experimental MI of rats was produced by the intraperitoneal injection of isoproterenol (ISO) (85 mg/kg/day) for two consecutive days. The growth and migration of CXCL9/CCL20-incubated cardiac fibroblasts in vitro were evaluated. TNF-α/TGF-β-activated PBMCs showed an enhanced expression of CXCL9 and CCL20, while hypoxic H9c2 cells did not. Patients with MI had significantly enhanced levels of serum TGF-β and CXCL9 compared to healthy subjects. ISO-treated rats had increased serum CXCL9 levels and marked cardiac fibrosis compared to control rats. The trend of increased serum CCL20 in patients with MI and ISO-treated rats was not significant. CXCL9-incubated cardiac fibroblasts showed enhanced proliferation and migration. The findings of this study suggest that an enhanced expression of CXCL9 following MI might play a role in post-MI cardiac fibrosis by activating cardiac fibroblasts.


2002 ◽  
Vol 282 (3) ◽  
pp. H842-H849 ◽  
Author(s):  
Andre Kamkin ◽  
Irina Kiseleva ◽  
Kay-Dietrich Wagner ◽  
Alexander Pylaev ◽  
Kate P. Leiterer ◽  
...  

Atrial fibroblasts are considered to modulate the contractile activity of the heart in response to mechanical stretch. In this study we examined whether atrial fibroblasts are possibly involved in bradyarrhythmia, which is a severe complication after myocardial infarction. For this purpose, transmembrane electrical potentials were recorded in cardiac fibroblasts near the sinoatrial node from sham-operated rats and from rats with myocardial infarction. Twenty days after infarction due to coronary artery ligation, the right atrial tissue weights and the sensitivity of the fibroblast membrane potential to mechanical stretch correlated positively with the infarct size. Cardiac growth was enhanced, but the stretch sensitivity and the resting membrane potential of the atrial fibroblasts declined between 8 and 30 days after infarction. The frequency of spontaneous atrial contractions was significantly reduced 8 days after myocardial infarction and recovered in parallel with the membrane potential of the fibroblasts. These findings suggest that changes in the susceptibility of atrial fibroblasts to mechanical stretch may contribute to bradyarrhythmia during postinfarct remodeling of the heart.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jing Yang ◽  
Bo Wang ◽  
Na Li ◽  
Qingqing Zhou ◽  
Wenhui Zhou ◽  
...  

The incidence of cardiac dysfunction after myocardial infarction (MI) continues to increase despite advances in treatment. Excessive myocardial fibrosis plays a vital role in the development of adverse cardiac remodeling and deterioration of cardiac function. Understanding the molecular and cellular mechanism of the fibrosis process and developing effective therapeutics are of great importance.Salvia miltiorrhizaandCarthamus tinctoriusextract (SCE) is indicated for angina pectoris and other ischemic cardiovascular diseases in China. SCE has been shown to inhibit the platelet activation and aggregation, ameliorate ROS-induced myocardial necrosis by inhibiting mitochondrial permeability transition pore opening, and promote angiogenesis by upregulating the expression of vascular endothelial growth factor (VEGF). However, whether SCE has effect on cardiac fibrosis after MI is not fully clear. Here, a mouse model of MI was established to observe the effect of SCE upon survival, cardiac function, myocardial fibrosis, and inflammation. Quantitative PCR and western blot assays were used to determine the expression of genes related to transforming growth factor-β(TGF-β) cascade and inflammatory responsesin vivo. Additionally, the effects of SCE upon the collagen production, TGF-β/Smad3 (SMAD family member 3) signaling, and the levels of histone methylation in primary cardiac fibroblasts were detected. We found that SCE treatment significantly improved survival and left ventricular function in mice after MI. Inhibition of inflammation and fibrosis, as well as decreased expression of Smad3, was observed with SCE treatment. In TGF-β-stimulated cardiac fibroblasts, SCE significantly decreased the expression of collagen,α-smooth muscle actin (α-SMA), and Smad3. Furthermore, SCE treatment downregulated the levels of H3K4 trimethylation (H3K4me3) and H3K36 trimethylation (H3K36me3) at theSmad3promoter region of cardiac fibroblasts, leading to inhibition ofSmad3transcription. Our findings suggested that SCE prevents myocardial fibrosis and adverse remodeling after MI with a novel mechanism of suppressing histone methylation of theSmad3promoter and its transcription.


2020 ◽  
Vol 21 (4) ◽  
pp. 1373
Author(s):  
Winston T. Stauffer ◽  
Erik A. Blackwood ◽  
Khalid Azizi ◽  
Randal J. Kaufman ◽  
Christopher C. Glembotski

Activating transcription factor-6 α (ATF6) is one of the three main sensors and effectors of the endoplasmic reticulum (ER) stress response and, as such, it is critical for protecting the heart and other tissues from a variety of environmental insults and disease states. In the heart, ATF6 has been shown to protect cardiac myocytes. However, its roles in other cell types in the heart are unknown. Here we show that ATF6 decreases the activation of cardiac fibroblasts in response to the cytokine, transforming growth factor β (TGFβ), which can induce fibroblast trans-differentiation into a myofibroblast phenotype through signaling via the TGFβ–Smad pathway. ATF6 activation suppressed fibroblast contraction and the induction of α smooth muscle actin (αSMA). Conversely, fibroblasts were hyperactivated when ATF6 was silenced or deleted. ATF6 thus represents a novel inhibitor of the TGFβ–Smad axis of cardiac fibroblast activation.


Sign in / Sign up

Export Citation Format

Share Document