scholarly journals The Effect of Nanostructures in Aluminum Alloys Processed Using Additive Manufacturing on Microstructural Evolution and Mechanical Performance Behavior

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 524
Author(s):  
Rachel Boillat ◽  
Sriram Praneeth Isanaka ◽  
Frank Liou

This paper reviews the status of nanoparticle technology as it relates to the additive manufacturing (AM) of aluminum-based alloys. A broad overview of common AM processes is given. Additive manufacturing is a promising field for the advancement of manufacturing due to its ability to yield near-net-shaped components that require minimal post-processing prior to end-use. AM also allows for the fabrication of prototypes as well as economical small batch production. Aluminum alloys processed via AM would be very beneficial to the manufacturing industry due to their high strength to weight ratio; however, many of the conventional alloy compositions have been shown to be incompatible with AM processing methods. As a result, many investigations have looked to methods to improve the processability of these alloys. This paper explores the use of nanostructures to enhance the processability of aluminum alloys. It is concluded that the addition of nanostructures is a promising route for modification of existing alloys and may be beneficial to other powder-based processes.

2021 ◽  
pp. 089270572199789
Author(s):  
S Gohar ◽  
G Hussain ◽  
A Ali ◽  
H Ahmad

Honey Comb Sandwich Structures (HCSS) have numerous applications in aerospace, automobile, and satellite industry because of their properties like high strength to weight ratio, stiffness and impact strength. Fused Deposition Modeling (FDM) is a process which, through its flexibility, simple processing, short manufacturing time, competitive prices and freedom of design, has an ability to enhance the functionality of HCSS. This paper investigates the mechanical behavior (i.e. flexural, edgewise compression and Interfacial bond strength) of FDM-built HCSS. The influence of face/core material was examined by manufacturing four types of specimens namely ABS core with Composite (PLA + 15% carbon fibers) face sheets, ABS core with PLA face sheets, TPU core with composite face sheets and TPU core with PLA face sheets. To measure the effect of face sheets geometry, raster layup was varied at 0°/90° and 45°/−45°. The mechanical characterization revealed that an optimum combination of materials is ABS core with composite face sheets having raster layup of 0°/90°. This study indicates that HCSS with complex lamination schemes and adequate mechanical properties could be manufactured using FDM which may widen the applications of FDM on an industrial scale.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Jiaheng Li ◽  
Yingbo Zhang ◽  
Xinyu Cao ◽  
Qi Zeng ◽  
Ye Zhuang ◽  
...  

Abstract Aluminum alloys are attractive for a number of applications due to their high specific strength, and developing new compositions is a major goal in the structural materials community. Here, we investigate the Al-Zn-Mg-Cu alloy system (7xxx series) by machine learning-based composition and process optimization. The discovered optimized alloy is compositionally lean with a high ultimate tensile strength of 952 MPa and 6.3% elongation following a cost-effective processing route. We find that the Al8Cu4Y phase in wrought 7xxx-T6 alloys exists in the form of a nanoscale network structure along sub-grain boundaries besides the common irregular-shaped particles. Our study demonstrates the feasibility of using machine learning to search for 7xxx alloys with good mechanical performance.


Author(s):  
Christian Felber ◽  
Florian Rödl ◽  
Ferdinand Haider

Abstract The most promising metal processing additive manufacturing technique in industry is selective laser melting, but only a few alloys are commercially available, limiting the potential of this technique. In particular high strength aluminum alloys, which are of great importance in the automotive industry, are missing. An aluminum 2024 alloy, reinforced by Ti-6Al-4V and B4C particles, could be used as a high strength alternative for aluminum alloys. Heat treating can be used to improve the mechanical properties of the metal matrix composite. Dynamic scanning calorimetry shows the formation of Al2Cu precipitates in the matrix instead of the expected Al2CuMg phases due to the loss of magnesium during printing, and precipitation processes are accelerated due to particle reinforcement and additive manufacturing. Strong reactions between aluminum and Ti-6Al-4V are observed in the microstructure, while B4C shows no reaction with the matrix or the titanium. The material shows high hardness, high stiffness, and low ductility through precipitation and particle reinforcement.


2018 ◽  
Vol 8 (10) ◽  
pp. 1837 ◽  
Author(s):  
Niklas Kretzschmar ◽  
Sergei Chekurov ◽  
Mika Salmi ◽  
Jukka Tuomi

Additive manufacturing of digital spare parts offers promising new possibilities for companies to drastically shorten lead times and to omit storage costs. However, the concept of digital spare parts has not yet gained much footing in the manufacturing industry. This study aims to identify grounds for its selective rejection. Conducted from a corporate perspective, outlining a holistic supply chain network structure to visualize different digital spare part distribution scenarios, this survey study evaluates technical and economic additive manufacturing capabilities. Results are analyzed and discussed further by applying the Mann-Whitney test to examine the influence of the company size and the presence of 3D-printed end-use components within supply networks on gathered data. Machines’ limited build chamber volumes and the necessity of post-processing are considered as the main technical challenges of current additive manufacturing processes. Furthermore, it can be concluded that company sizes have a significant effect on perceived technological limitations. Overall, the results lead to the conclusion that the readiness level of the digital spare parts concept demands for further development.


Author(s):  
VIJAY KUMAR MEENA ◽  
PARVEEN KALRA ◽  
RAVINDRA KUMAR SINHA

Additive manufacturing (AM) of titanium (Ti) alloys has always fascinated researchers owing to its high strength to weight ratio, biocompatibility, and anticorrosive properties, making Ti alloy an ideal candidate for medical applications. The aim of this paper is to optimize the AM parameters, such as Laser Power (LP), Laser Scan Speed (LSS), and Hatch Space (HS), using Analysis of Variance (ANOVA) and Grey Relational analysis (GRA) for mechanical and surface characteristics like hardness, surface roughness, and contact angle, of Ti6Al4V ELI considering medical implant applications. The input parameters are optimized to have optimum hardness, surface roughness and hydrophilicity required for medical implants.


2019 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
Madhuparna Roy ◽  
Phong Tran ◽  
Tarik Dickens ◽  
Amanda Schrand

The demand for additively manufactured polymer composites with increased specific properties and functional microstructure has drastically increased over the past decade. The ability to manufacture complex designs that can maximize strength while reducing weight in an automated fashion has made 3D-printed composites a popular research target in the field of engineering. However, a significant amount of understanding and basic research is still necessary to decode the fundamental process mechanisms of combining enhanced functionality and additively manufactured composites. In this review, external field-assisted additive manufacturing techniques for polymer composites are discussed with respect to (1) self-assembly into complex microstructures, (2) control of fiber orientation for improved interlayer mechanical properties, and (3) incorporation of multi-functionalities such as electrical conductivity, self-healing, sensing, and other functional capabilities. A comparison between reinforcement shapes and the type of external field used to achieve mechanical property improvements in printed composites is addressed. Research has shown the use of such materials in the production of parts exhibiting high strength-to-weight ratio for use in aerospace and automotive fields, sensors for monitoring stress and conducting electricity, and the production of flexible batteries.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xuewei Fang ◽  
Guopeng Chen ◽  
Jiannan Yang ◽  
Yang Xie ◽  
Ke Huang ◽  
...  

High-strength 7xxx series aluminum alloys are of great importance for the aerospace industries. However, this type of aluminum alloys has poor processability for most additive manufacturing techniques. In this paper, a newly designed Al–Zn–Mg alloy was used as a feeding wire to fabricate thin wall-shaped samples using the wire and arc additive manufacturing (WAAM) technique. These samples were fabricated based on the cold metal transfer (CMT) process with four different types of arc modes, that is, CMT, CMT-incorporated pulse (CMT + P), CMT-incorporated polarity (CMT + A), CMT-incorporated pulse and polarity (CMT + PA). The optical microscopy, x-ray computed tomography, and scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) were employed to characterize the microstructure and phase constitution. The results clearly reveal that the porosity varies with the arc modes, and the densest sample with porosity of 0.97% was obtained using the CMT + P mode. The mechanical properties of the fabricated samples are also dependent on the arc modes. The tensile strength and yield strength of the sample manufactured by the CMT + PA arc mode are the highest. In terms of anisotropy, the strength differences in horizontal and vertical direction of the samples made by CMT + PA, CMT + A, and CMT modes are all large, which is mainly ascribed to the pores distributed at the interlayer region.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1763
Author(s):  
Nthateng Nkhasi ◽  
Willie du Preez ◽  
Hertzog Bissett

Metal powders suitable for use in powder bed additive manufacturing processes should ideally be spherical, dense, chemically pure and of a specified particle size distribution. Ti6Al4V is commonly used in the aerospace, medical and automotive industries due to its high strength-to-weight ratio and excellent corrosion resistance properties. Interstitial impurities in titanium alloys have an impact upon mechanical properties, particularly oxygen, nitrogen, hydrogen and carbon. The plasma spheroidisation process can be used to spheroidise metal powder consisting of irregularly shaped particles. In this study, the plasma spheroidisation of metal powder was performed on Ti6Al4V powder consisting of irregularly shaped particles. The properties of the powder relevant for powder bed fusion that were determined included the particle size distribution, morphology, particle porosity and chemical composition. Conclusions were drawn regarding the viability of using this process to produce powder suitable for additive manufacturing.


Author(s):  
Surendar Ganesan ◽  
Balasubramanian Esakki ◽  
Lung-Jieh Yang ◽  
D Rajamani ◽  
M Silambarsan ◽  
...  

The development of a flapping wing microaerial vehicle mechanism with a high strength-to-weight ratio to withstand high flapping frequency is of significant interest in aerospace applications. The traditional manufacturing methods such as injection moulding and wire-cut electrical discharge machining suffer from high cost, labour intensiveness, and time-to-market. However, the present disruptive additive manufacturing technology is considered a viable replacement for manufacturing micromechanism components. Significantly to withstand high cyclic loads, metal-based high strength-to-weight ratio flapping wing microaerial vehicle components are the need of the hour. Hence, the present work focused on the fabrication of flapping wing microaerial vehicle micromechanism components using selective laser melting with AlSi10Mg alloy. The manufactured micromechanism components attained 99% of dimensional accuracy, and the total weight of the Evans mechanism assembly is 4 g. The scanning electron microscopy analysis revealed the laser melting surface characteristics of the Al alloy. The assembled mechanism is tested in static and dynamic environments to ensure structural rigidity. Aerodynamic forces are measured using a wind tunnel setup, and 7.5 lift and 1.2 N thrust forces are experienced that will be sufficient enough to carry a payload of 1 g camera on-board for surveillance missions. The study suggested that the metal additive manufacturing technology is a prominent solution to realize the micromechanism components effortlessly compared to conventional subtractive manufacturing.


Author(s):  
Nashat Nawafleh ◽  
Emrah Celik

Abstract Additive manufacturing (AM) is a novel technology which allows fabrication of complex geometries from digital representations without tooling. In addition, this technology results in low material waste, short lead times and cost reduction especially for the production of parts in low quantities. Current additive manufacturing processes developed for thermoplastic sandwich panels suffer from an unavoidable weak mechanical performance and low thermal resistance. To overcome these limitations, emphasis is paid in this study on direct write AM technology for the fabrication of short carbon fiber-reinforced sandwich panel composites. Sandwich panels using different infill densities with high strength (> 107 MPa), and high short carbon fiber volume (46%) were attained successfully. In parallel to the strength enhancement, these sandwich panels possessed reduced densities (0.72 g/cc3) due to their lightweight lattice core structures. The mechanical performance of the created sandwich panels was examined and compared to the unreinforced, base ink structures by performing compression tests. Successful fabrication and characterization of the additively manufactured thermoset-based carbon fiber reinforced, sandwich panels in this study can extend the range of applications for AM composites that require lightweight structures, high mechanical performance as well as the desired component complexity.


Sign in / Sign up

Export Citation Format

Share Document