scholarly journals A Review on Synthesis Methods of Phyllosilicate- and Graphene-Filled Composite Hydrogels

2022 ◽  
Vol 6 (1) ◽  
pp. 15
Author(s):  
Sayan Ganguly ◽  
Shlomo Margel

This review discusses, in brief, the various synthetic methods of two widely-used nanofillers; phyllosilicate and graphene. Both are 2D fillers introduced into hydrogel matrices to achieve mechanical robustness and water uptake behavior. Both the fillers are inserted by physical and chemical gelation methods where most of the chemical gelation, i.e., covalent approaches, results in better physical properties compared to their physical gels. Physical gels occur due to supramolecular assembly, van der Waals interactions, electrostatic interactions, hydrophobic associations, and H-bonding. For chemical gelation, in situ radical triggered gelation mostly occurs.

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3908 ◽  
Author(s):  
Wang ◽  
Mukhtar ◽  
Wu ◽  
Gu ◽  
Cao

In the last couple of decades, there has been a lot of progress in the synthesis methods of nano-structural materials, but still the field has a large number of puzzles to solve. Metal nanowires (NWs) and their alloys represent a sub category of the 1-D nano-materials and there is a large effort to study the microstructural, physical and chemical properties to use them for further industrial applications. Due to technical limitations of single component NWs, the hetero-structured materials gained attention recently. Among them, multi-segmented NWs are more diverse in applications, consisting of two or more segments that can perform multiple function at a time, which confer their unique properties. Recent advancement in characterization techniques has opened up new opportunities for understanding the physical properties of multi-segmented structures of 1-D nanomaterials. Since the multi-segmented NWs needs a reliable response from an external filed, numerous studies have been done on the synthesis of multi-segmented NWs to precisely control the physical properties of multi-segmented NWs. This paper highlights the electrochemical synthesis and physical properties of multi-segmented NWs, with a focus on the mechanical and magnetic properties by explaining the shape, microstructure, and composition of NWs.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuliang Sun ◽  
Xing Meng ◽  
Yohan Dall’Agnese ◽  
Chunxiang Dall’Agnese ◽  
Shengnan Duan ◽  
...  

Abstract Since their seminal discovery in 2011, two-dimensional (2D) transition metal carbides/nitrides known as MXenes, that constitute a large family of 2D materials, have been targeted toward various applications due to their outstanding electronic properties. MXenes functioning as co-catalyst in combination with certain photocatalysts have been applied in photocatalytic systems to enhance photogenerated charge separation, suppress rapid charge recombination, and convert solar energy into chemical energy or use it in the degradation of organic compounds. The photocatalytic performance greatly depends on the composition and morphology of the photocatalyst, which, in turn, are determined by the method of preparation used. Here, we review the four different synthesis methods (mechanical mixing, self-assembly, in situ decoration, and oxidation) reported for MXenes in view of their application as co-catalyst in photocatalysis. In addition, the working mechanism for MXenes application in photocatalysis is discussed and an outlook for future research is also provided.


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1463 ◽  
Author(s):  
Vishma Pratap Sur ◽  
Marketa Kominkova ◽  
Zaneta Buchtova ◽  
Kristyna Dolezelikova ◽  
Ondrej Zitka ◽  
...  

The physical and chemical synthesis methods of quantum dots (QDs) are generally unfavorable for biological applications. To overcome this limitation, the development of a novel “green” route to produce highly-fluorescent CdSe QDs constitutes a promising substitute approach. In the present work, CdSe QDs were biosynthesized in yeast Saccharomyces cerevisiae using a novel method, where we showed for the first time that the concentration of tryptone highly affects the synthesis process. The optimum concentration of tryptone was found to be 25 g/L for the highest yield. Different methods were used to optimize the QD extraction from yeast, and the best method was found to be by denaturation at 80 °C along with an ultrasound needle. Multiple physical characterizations including transmission electron microscopy (TEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), and spectrophotometry confirmed the optical features size and shape distribution of the QDs. We showed that the novel conjugate of the CdSe QDs and a cell-penetrating peptide (hecate) can detect bacterial cells very efficiently under a fluorescent microscope. The conjugate also showed strong antibacterial activity against vancomycin-resistant Staphylococcus aureus (VRSA), methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli, which may help us to cope with the problem of rising antibiotic resistance.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1476
Author(s):  
Ana Cristina Ferrão ◽  
Raquel P. F. Guiné ◽  
Elsa Ramalhosa ◽  
Arminda Lopes ◽  
Cláudia Rodrigues ◽  
...  

Hazelnuts are one of the most appreciated nuts worldwide due to their unique organoleptic and nutritional characteristics. The present work intended to analyse several physical and chemical properties of different hazelnut varieties grown in Portugal, namely Tonda de Giffoni, Grada de Viseu, Segorbe, Longa de Espanha, Butler, Gunslebert, and Negreta. In general, the results revealed statistically significant differences between the varieties under study. The Gunslebert had more elongated hazelnuts and with heavier shelled fruits, while the kernels of the Grada de Viseu revealed to be heavier. Grada de Viseu was harder in the shell, Gunslebert had a harder core, and Segorbe was more resistant to fracture. Fat was the more representative component for all varieties and in some cases the values of moisture and water activity were over the recommended amount (≥0.62). Tonda de Giffoni was the variety with the highest induction time, indicating the highest oxidation stability. Moreover, discriminant analysis revealed that the variables more important to distinguish the varieties were protein (λ = 0.007) and water activity (λ = 0.010). The results of this study help to better understand the differences between some hazelnut varieties that are cultivated in Portugal, which gives important hints for all players in the hazelnut sector.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 310
Author(s):  
Dohyeon Han ◽  
Doohwan Lee

Fine control of morphology and exposed crystal facets of porous γ-Al2O3 is of significant importance in many application areas such as functional nanomaterials and heterogeneous catalysts. Herein, a morphology controlled in situ synthesis of Al@Al2O3 core–shell architecture consisting of an Al metal core and a porous γ-Al2O3 shell is explored based on interfacial hydrothermal reactions of an Al metal substrate in aqueous solutions of inorganic anions. It was found that the morphology and structure of boehmite (γ-AlOOH) nano-crystallites grown at the Al-metal/solution interface exhibit significant dependence on temperature, type of inorganic anions (Cl−, NO3−, and SO42−), and acid–base environment of the synthesis solution. Different extents of the electrostatic interactions between the protonated hydroxyl groups on (010) and (001) facets of γ-AlOOH and the inorganic anions (Cl−, NO3−, SO42−) appear to result in the preferential growth of γ-AlOOH toward specific crystallographic directions due to the selective capping of the facets by adsorption of the anions. It is hypothesized that the unique Al@Al2O3 core–shell architecture with controlled morphology and exposed crystal-facets of the γ-Al2O3 shell can provide significant intrinsic catalytic properties with enhanced heat and mass transport to heterogeneous catalysts for applications in many thermochemical reaction processes. The direct fabrication of γ-Al2O3 nano-crystallites from Al metal substrate with in-situ modulation of their morphologies and structures into 1D, 2D, and 3D nano-architectures explored in this work is unique and can offer significant opportunities over the conventional methods.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 617
Author(s):  
Yaodan Zhang ◽  
Zhijun Li ◽  
Yuanren Xiu ◽  
Chunjiang Li ◽  
Baosen Zhang ◽  
...  

Frazil particles, ice crystals or slushy granules that form in turbulent water, change the freezing properties of ice to create “frazil ice”. To understand the microstructural characteristics of these particles and the physical properties of frazil ice in greater depth, an in situ sampler was designed to collect frazil particles in the Yellow River. The ice crystal microstructural characteristics of the frazil particles (morphology, size, air bubble, and sediment) were observed under a microscope, and their nucleation mechanism was analyzed according to its microstructure. The physical properties of frazil ice (ice crystal microstructure, air bubble, ice density, and sediment content) were also observed. The results showed that these microstructures of frazil particles can be divided into four types: granular, dendritic, needle-like, and serrated. The size of the measured frazil particles ranged from 0.1 to 25 mm. Compared with columnar ice, the crystal microstructure of frazil ice is irregular, with a mean crystal diameter less than 5 mm extending in all directions. The crystal grain size and ice density of frazil ice are smaller than columnar ice, but the bubble and sediment content are larger.


2021 ◽  
Vol 5 (7) ◽  
pp. 191
Author(s):  
Yanshuai Wang ◽  
Siyao Guo ◽  
Biqin Dong ◽  
Feng Xing

The functionalization of graphene has been reported widely, showing special physical and chemical properties. However, due to the lack of surface functional groups, the poor dispersibility of graphene in solvents strongly limits its engineering applications. This paper develops a novel green “in-situ titania intercalation” method to prepare a highly dispersed graphene, which is enabled by the generation of the titania precursor between the layer of graphene at room temperature to yield titania-graphene nanocomposites (TiO2-RGO). The precursor of titania will produce amounts of nano titania between the graphene interlayers, which can effectively resist the interfacial van der Waals force of the interlamination in graphene for improved dispersion state. Such highly dispersed TiO2-RGO nanocomposites were used to modify epoxy resin. Surprisingly, significant enhancement of the mechanical performance of epoxy resin was observed when incorporating the titania-graphene nanocomposites, especially the improvements in tensile strength and elongation at break, with 75.54% and 176.61% increases at optimal usage compared to the pure epoxy, respectively. The approach presented herein is easy and economical for industry production, which can be potentially applied to the research of high mechanical property graphene/epoxy composite system.


2021 ◽  
pp. 1-10
Author(s):  
Anshu Siwach ◽  
Siddhartha Kaushal ◽  
Ratul Baishya

Abstract Mosses are one of the most important and dominant plant communities, especially in the temperate biome, and play a significant role in ecosystem function and dynamics. They influence the water, energy and element cycle due to their unique ecology and physiology. The present study was undertaken in three different temperate forest sites in the Garhwal Himalayas, viz., Triyuginarayan (Kedarnath Wildlife Sanctuary (KWLS)), Chakrata, and Kanasar forest range. The study was focused on understanding the influence of mosses on soil physical properties and nutrient availability. Different physico-chemical properties were analysed under two different substrata, that is, with and without moss cover in two different seasons, viz., monsoon and winter. We observed mosses to influence and alter the physical properties and nutrient status of soil in both seasons. All soil physical and chemical properties, except magnesium, showed significant difference within the substrates, among all the sites and across the two seasons. Besides the soil characteristics underneath the moss vegetation, the study also highlights the diversity of mosses found in the area. Mosses appear to create high nutrient microsites via a high rate of organic matter accumulation and retain nutrients for longer periods thus, maintaining ecosystem stability.


Sign in / Sign up

Export Citation Format

Share Document