scholarly journals Changes in Free-Living and Particle-Associated Bacterial Communities Depending on the Growth Phases of Marine Green Algae, Tetraselmis suecica

2021 ◽  
Vol 9 (2) ◽  
pp. 171
Author(s):  
Bum Soo Park ◽  
Won-Ji Choi ◽  
Ruoyu Guo ◽  
Hansol Kim ◽  
Jang-Seu Ki

Bacteria are remarkably associated with the growth of green algae Tetraselmis which are used as a feed source in aquaculture, but Tetraselmis-associated bacterial community is characterized insufficiently. Here, as a first step towards characterization of the associated bacteria, we investigated the community composition of free-living (FLB) and particle-associated (PAB) bacteria in each growth phase (lag, exponential, stationary, and death) of Tetraselmis suecica P039 culture using pyrosequencing. The percentage of shared operational taxonomic units (OTUs) between FLB and PAB communities was substantially high (≥92.4%), but their bacterial community compositions were significantly (p = 0.05) different from each other. The PAB community was more variable than the FLB community depending on the growth phase of T. suecica. In the PAB community, the proportions of Marinobacter and Flavobacteriaceae were considerably varied in accordance with the cell number of T. suecica, but there was no clear variation in the FLB community composition. This suggests that the PAB community may have a stronger association with the algal growth than the FLB community. Interestingly, irrespective of the growth phase, Roseobacter clade and genus Muricauda were predominant in both FLB and PAB communities, indicating that bacterial communities in T. suecica culture may positively affect the algae growth and that they are potentially capable of enhancing the T. suecica growth.

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2757
Author(s):  
Alexa Hoke ◽  
Jason Woodhouse ◽  
Luca Zoccarato ◽  
Valerie McCarthy ◽  
Elvira de Eyto ◽  
...  

Extreme weather events are projected to increase in frequency and intensity as climate change continues. Heterotrophic bacteria play a critical role in lake ecosystems, yet little research has been done to determine how they are affected by such extremes. The purpose of this study was to use high-throughput sequencing to explore the bacterial community composition of a humic oligotrophic lake on the North Atlantic Irish coast and to assess the impacts on composition dynamics related to extreme weather events. Samples for sequencing were collected from Lough Feeagh on a fortnightly basis from April to November 2018. Filtration was used to separate free-living and particle-associated bacterial communities and amplicon sequencing was performed for the 16S rRNA V4 region. Two named storms, six high discharge events, and one drought period occurred during the sampling period. These events had variable, context-dependent effects on bacterial communities in Lough Feeagh. The particle-associated community was found to be more likely to respond to physical changes, such as mixing, while the free-living population responded to changes in nutrient and carbon concentrations. Generally, however, the high stability of the bacterial community observed in Lough Feeagh suggests that the bacterial community is relatively resilient to extreme weather events.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Huan Wang ◽  
Rong Zhu ◽  
Xiaolin Zhang ◽  
Yun Li ◽  
Leyi Ni ◽  
...  

Abstract Bacterial communities are an important part of biological diversity and biogeochemical cycling in aquatic ecosystems. In this study, the relationship amongst the phytoplankton species composition and abiotic environmental factors on seasonal changes in the community composition of free-living and attached bacteria in Lake Erhai were studied. Using Illumina high-throughput sequencing, we found that the impact of environmental factors on both the free-living and attached bacterial community composition was greater than that of the phytoplankton community, amongst which total phosphorus, Secchi disk, water temperature, dissolved oxygen and conductivity strongly influenced bacterial community composition. Microcystis blooms associated with subdominant Psephonema occurred during the summer and autumn, and Fragilaria, Melosira and Mougeotia were found at high densities in the other seasons. Only small numbers of algal species-specific bacteria, including Xanthomonadaceae (Proteobacteria) and Alcaligenaceae (Betaproteobacteria), were tightly coupled to Microcystis and Psephonema during Microcystis blooms. Redundancy analysis showed that although the composition of the bacterial communities was controlled by species composition mediated by changes in phytoplankton communities and abiotic environmental factors, the impact of the abiotic environment on both free-living and attached bacterial community compositions were greater than the impact of the phytoplankton community. These results suggest that the species composition of both free-living and attached bacterial communities are affected by abiotic environmental factors, even when under strong control by biotic factors, particularly dominant genera of Microcystis and Psephonema during algal blooms.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5508 ◽  
Author(s):  
Yan Li ◽  
Yan Kong ◽  
Dexiong Teng ◽  
Xueni Zhang ◽  
Xuemin He ◽  
...  

BackgroundRecently, researches have begun to investigate the microbial communities associated with halophytes. Both rhizobacterial community composition and the environmental drivers of community assembly have been addressed. However, few studies have explored the structure of rhizobacterial communities associated with halophytic plants that are co-occurring in arid, salinized areas.MethodsFive halophytes were selected for study: these co-occurred in saline soils in the Ebinur Lake Nature Reserve, located at the western margin of the Gurbantunggut Desert of Northwestern China. Halophyte-associated bacterial communities were sampled, and the bacterial 16S rDNA V3–V4 region amplified and sequenced using the Illumina Miseq platform. The bacterial community diversity and structure were compared between the rhizosphere and bulk soils, as well as among the rhizosphere samples. The effects of plant species identity and soil properties on the bacterial communities were also analyzed.ResultsSignificant differences were observed between the rhizosphere and bulk soil bacterial communities. Diversity was higher in the rhizosphere than in the bulk soils. Abundant taxonomic groups (from phylum to genus) in the rhizosphere were much more diverse than in bulk soils. Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Planctomycetes were the most abundant phyla in the rhizosphere, while Proteobacteria and Firmicutes were common in bulk soils. Overall, the bacterial community composition were not significantly differentiated between the bulk soils of the five plants, but community diversity and structure differed significantly in the rhizosphere. The diversity ofHalostachys caspica,Halocnemum strobilaceumandKalidium foliatumassociated bacterial communities was lower than that ofLimonium gmeliniiandLycium ruthenicumcommunities. Furthermore, the composition of the bacterial communities ofHalostachys caspicaandHalocnemum strobilaceumwas very different from those ofLimonium gmeliniiandLycium ruthenicum. The diversity and community structure were influenced by soil EC, pH and nutrient content (TOC, SOM, TON and AP); of these, the effects of EC on bacterial community composition were less important than those of soil nutrients.DiscussionHalophytic plant species played an important role in shaping associated rhizosphere bacterial communities. When salinity levels were constant, soil nutrients emerged as key factors structuring bacterial communities, while EC played only a minor role. Pairwise differences among the rhizobacterial communities associated with different plant species were not significant, despite some evidence of differentiation. Further studies involving more halophyte species, and individuals per species, are necessary to elucidate plant species identity effects on the rhizosphere for co-occurring halophytes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mayank Krishna ◽  
Shruti Gupta ◽  
Manuel Delgado – Baquerizo ◽  
Elly Morriën ◽  
Satish Chandra Garkoti ◽  
...  

Abstract This study investigated the potential role of a nitrogen-fixing early-coloniser Alnus Nepalensis D. Don (alder) in driving the changes in soil bacterial communities during secondary succession. We found that bacterial diversity was positively associated with alder growth during course of ecosystem development. Alder development elicited multiple changes in bacterial community composition and ecological networks. For example, the initial dominance of actinobacteria within bacterial community transitioned to the dominance of proteobacteria with stand development. Ecological networks approximating species associations tend to stabilize with alder growth. Janthinobacterium lividum, Candidatus Xiphinematobacter and Rhodoplanes were indicator species of different growth stages of alder. While the growth stages of alder has a major independent contribution to the bacterial diversity, its influence on the community composition was explained conjointly by the changes in soil properties with alder. Alder growth increased trace mineral element concentrations in the soil and explained 63% of variance in the Shannon-diversity. We also found positive association of alder with late-successional Quercus leucotrichophora (Oak). Together, the changes in soil bacterial community shaped by early-coloniser alder and its positive association with late-successional oak suggests a crucial role played by alder in ecosystem recovery of degraded habitats.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 701 ◽  
Author(s):  
Fengling Zhang ◽  
Xingjia Xiang ◽  
Yuanqiu Dong ◽  
Shaofei Yan ◽  
Yunwei Song ◽  
...  

Intestinal bacterial communities form an integral component of the organism. Many factors influence gut bacterial community composition and diversity, including diet, environment and seasonality. During seasonal migration, birds use many habitats and food resources, which may influence their intestinal bacterial community structure. Hooded crane (Grus monacha) is a migrant waterbird that traverses long distances and occupies varied habitats. In this study, we investigated the diversity and differences in intestinal bacterial communities of hooded cranes over the migratory seasons. Fecal samples from hooded cranes were collected at a stopover site in two seasons (spring and fall) in Lindian, China, and at a wintering ground in Shengjin Lake, China. We analyzed bacterial communities from the fecal samples using high throughput sequencing (Illumina Mi-seq). Firmicutes, Proteobacteria, Tenericutes, Cyanobacteria, and Actinobacteria were the dominant phyla across all samples. The intestinal bacterial alpha-diversity of hooded cranes in winter was significantly higher than in fall and spring. The bacterial community composition significantly differed across the three seasons (ANOSIM, P = 0.001), suggesting that seasonal fluctuations may regulate the gut bacterial community composition of migratory birds. This study provides baseline information on the seasonal dynamics of intestinal bacterial community structure in migratory hooded cranes.


2019 ◽  
Vol 7 (10) ◽  
pp. 385
Author(s):  
Yunyun Fu ◽  
Richard B. Rivkin ◽  
Andrew S. Lang

The Arctic Ocean is one of the least well-studied marine microbial ecosystems. Its low-temperature and low-salinity conditions are expected to result in distinct bacterial communities, in comparison to lower latitude oceans. However, this is an ocean currently in flux, with climate change exerting pronounced effects on sea-ice coverage and freshwater inputs. How such changes will affect this ecosystem are poorly constrained. In this study, we characterized the bacterial community compositions at different depths in both coastal, freshwater-influenced, and pelagic, sea-ice-covered locations in the Beaufort Sea in the western Canadian Arctic Ocean. The environmental factors controlling the bacterial community composition and diversity were investigated. Alphaproteobacteria dominated the bacterial communities in samples from all depths and stations. The Pelagibacterales and Rhodobacterales groups were the predominant taxonomic representatives within the Alphaproteobacteria. Bacterial communities in coastal and offshore samples differed significantly, and vertical water mass segregation was the controlling factor of community composition among the offshore samples, regardless of the taxonomic level considered. These data provide an important baseline view of the bacterial community in this ocean system that will be of value for future studies investigating possible changes in the Arctic Ocean in response to global change and/or anthropogenic disturbance.


2020 ◽  
Vol 86 (12) ◽  
Author(s):  
Ferran Romero ◽  
Vicenç Acuña ◽  
Sergi Sabater

ABSTRACT Freshwater ecosystems are exposed to multiple stressors, but their individual and combined effects remain largely unexplored. Here, we investigated the response of stream biofilm bacterial communities to warming, hydrological stress, and pesticide exposure. We used 24 artificial streams on which epilithic (growing on coarse sediments) and epipsammic (growing on fine sediments) stream biofilms were maintained. Bacterial community composition and estimated function of biofilms exposed during 30 days to individual and combined stressors were assessed using 16S rRNA gene metabarcoding. Among the individual effects by stressors, hydrological stress (i.e., a simulated low-flow situation) was the most relevant, since it significantly altered 57% of the most abundant bacterial taxa (n = 28), followed by warming (21%) and pesticide exposure (11%). Regarding the combined effects, 16% of all stressor combinations resulted in significant interactions on bacterial community composition and estimated function. Antagonistic responses prevailed (57 to 89% of all significant interactions), followed by synergisms (11 to 43%), on specific bacterial taxa, indicating that multiple-stressor scenarios could lead to unexpected shifts in the community composition and associated functions of riverine bacterial communities. IMPORTANCE Freshwater ecosystems such as rivers are of crucial importance for human well-being. However, human activities result in many stressors (e.g., toxic chemicals, increased water temperatures, and hydrological alterations) cooccurring in rivers and streams worldwide. Among the many organisms inhabiting rivers and streams, bacteria are ecologically crucial; they are placed at the base of virtually all food webs and they recycle the organic matter needed for bigger organisms. Most of these bacteria are in close contact with river substratum, where they form the biofilms. There is an urgent need to evaluate the effects of these stressors on river biofilms, so we can anticipate future environmental problems. In this study, we experimentally exposed river biofilms to a pesticide mixture, an increase in water temperature and a simulated low-flow condition, in order to evaluate the individual and joint effects of these stressors on the bacterial community composition and estimated function.


2020 ◽  
Author(s):  
Yongqin Liu ◽  
Tandong Yao ◽  
Baiqing Xu

<p>Many studies focusing on the physical and chemical indicators of the ice core reflected the climate changes. However, only few biological indicators indicated the past climate changes which are mainly focused in biomass rather than diversity. How the biodiversity response to the climate change during the past hundred years is still unknow. Glaciers in Mt. Muztagh Ata region are influenced by the year-round westerly circulation. We firstly disclosed annual variations of bacterial community compositions in ice core over the past 130 years from Muztagh Glacier, the western Tibetan Plateau. Temporal variation in bacterial abundance was strongly controlled by DOC, TN, δ<sup>18</sup>O, Ca<sup>2+</sup>, SO<sub>4</sub><sup>2</sup><sup>−</sup>, NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>−</sup>. Proteobacteria, Actinobacteria and Firmicutes were the three most abundant bacterial phyla, accounting for 49.3%, 21.3% and 11.0% of the total community, respectively. The abundances of Firmicutes and Bacteroidetes pronouncedly increased over time throughout the entire ice core. UPGMA cluster analysis of the bacterial community composition separated the all ice core samples into two main clusters along the temporal variation. The first cluster consisted of samples from 1951 to 2000 and the second cluster contained main samples during the period of 1869-1950. The stage 1 and stage 2 bacterial community dissimilarities increased linearly with time on the basis of the Bray-Curtis distance, indicating a similar temporal–decay relationship between the stage 1 and stage 2 bacterial communities. Of all the environmental variables examined, only DOC and NH<sub>4</sub><sup>+</sup> exhibited very strong negative correlations with bacterial Chao1-richness. <sup>18</sup>O was another important variable in shaping the ice core bacterial community composition and contributed 1.6% of the total variation. Moreover, DistLM analysis indicated that the environmental variables explained more variation in the stage 1 community (20.1%) than that of the stage 2 community (19.9%).</p>


2012 ◽  
Vol 10 (2) ◽  
pp. 244-255 ◽  
Author(s):  
T. B. Shirey ◽  
R. W. Thacker ◽  
J. B. Olson

Granular activated carbon (GAC) is an alternative filter substrate for municipal water treatment as it provides a high surface area suitable for microbial colonization. The resulting microbial growth promotes biodegradation of organic materials and other contaminants from influent waters. Here, the community structure of the bacteria associated with three GAC and two anthracite filters was examined over 12 months to monitor changes in community composition. Nearly complete 16S rRNA genes were polymerase chain reaction amplified for terminal restriction fragment length polymorphism (T-RFLP) analyses. The identity of commonly occurring peaks was determined through the construction of five representative 16S rRNA clone libraries. Based on sequence analysis, the bacterial communities associated with both anthracite and GAC filters appear to be composed of environmentally derived bacteria, with no known human pathogens. Analysis of similarity tests revealed that significant differences in bacterial community structure occurred over time, with filter substrate playing an important role in determining community composition. GAC filters exhibited the greatest degree of bacterial community variability over the sampling period, while anthracite filters showed a lower degree of variability and less change in community composition. Thus, GAC may be a suitable biologically active filter substrate for the treatment of municipal drinking water.


2021 ◽  
Author(s):  
Hongfei Wang ◽  
Manik Prabhu Narsing Rao ◽  
Yanli Gao ◽  
Xinyang Li ◽  
Rui Gao ◽  
...  

Abstract Background: The seed dimorphism was thought to be a bet-hedging strategy, which assists plants to survive in the disturbed environment and has been widely studied for their ecological adaptation mechanism. Many studies showed that seed-associated microorganisms play an important role in enhancing plant fitness, but information regarding endophytic bacteria associated with dimorphic seeds is limited. This study explores the influence of seed coat structure and seed phytochemical properties on the community composition and diversity of endophytic bacteria of dimorphic seeds of Suaeda glauca. In the present study, we firstly used 16S rRNA high-throughput gene sequencing method to compare the bacterial diversity and community composition between brown and black seeds of Suaeda glauca. Results: A significant difference was observed in seed coat structure and phytochemical properties between brown and black seeds of S. glauca. Total 9 phyla, 13 classes, 31 orders, 53 families, 102 genera were identified in the dimorphic seeds. The dominant phyla were Proteobacteria, Firmicutes, and Actinobacteria. The results showed that seed dimorphism had little impact on the diversity and richness of endophytic bacterial communities but significantly differs in the relative abundance of the bacterial community between brown and black seeds. At the phylum level, Actinobacteria tend to be enriched significantly in brown seeds. At the genus level, Rhodococcus, Ralstonia, Pelomonas and Bradyrhizobium tend to be enriched significantly in brown seeds, while Marinilactibacillus was mainly found in black seeds. Besides, brown seeds harbored a large number of bacteria with plant-growth-promoting traits, whereas black seeds presented bacteria with enzyme activities (i.e. pectinase, cellulolytic and xylanolytic activities). Conclusion: The endophytic bacterial community compositions were significantly different between dimorphic seeds of Suaeda glauca, and play an important role in the ecological adaptation of dimorphic seeds by performing different bacterial function roles. The endophytic bacterial communities of the dimorphic seeds might be influenced mainly by the seed coat structure and partly by seed phytochemical characteristics. These findings provide valuable information for better understanding of the ecological adaptation strategy of dimorphic seeds in the disturbed environment.


Sign in / Sign up

Export Citation Format

Share Document