scholarly journals β-Glucan Metabolic and Immunomodulatory Properties and Potential for Clinical Application

2020 ◽  
Vol 6 (4) ◽  
pp. 356
Author(s):  
Emma J. Murphy ◽  
Emanuele Rezoagli ◽  
Ian Major ◽  
Neil J. Rowan ◽  
John G. Laffey

β-glucans are complex polysaccharides that are found in several plants and foods, including mushrooms. β-glucans display an array of potentially therapeutic properties. β-glucans have metabolic and gastro-intestinal effects, modulating the gut microbiome, altering lipid and glucose metabolism, reducing cholesterol, leading to their investigation as potential therapies for metabolic syndrome, obesity and diet regulation, gastrointestinal conditions such as irritable bowel, and to reduce cardiovascular and diabetes risk. β-glucans also have immune-modulating effects, leading to their investigation as adjuvant agents for cancers (solid and haematological malignancies), for immune-mediated conditions (e.g., allergic rhinitis, respiratory infections), and to enhance wound healing. The therapeutic potential of β-glucans is evidenced by the fact that two glucan isolates were licensed as drugs in Japan as immune-adjuvant therapy for cancer in 1980. Significant challenges exist to further clinical testing and translation of β-glucans. The diverse range of conditions for which β-glucans are in clinical testing underlines the incomplete understanding of the diverse mechanisms of action of β-glucans, a key knowledge gap. Furthermore, important differences appear to exist in the effects of apparently similar β-glucan preparations, which may be due to differences in sources and extraction procedures, another poorly understood issue. This review will describe the biology, potential mechanisms of action and key therapeutic targets being investigated in clinical trials of β-glucans and identify and discuss the key challenges to successful translation of this intriguing potential therapeutic.

2003 ◽  
Vol 198 (8) ◽  
pp. 1237-1242 ◽  
Author(s):  
Ian R. Humphreys ◽  
Gerhard Walzl ◽  
Lorna Edwards ◽  
Aaron Rae ◽  
Sue Hill ◽  
...  

Respiratory infections are the third leading cause of death worldwide. Illness is caused by pathogen replication and disruption of airway homeostasis by excessive expansion of cell numbers. One strategy to prevent lung immune–mediated damage involves reducing the cellular burden. To date, antiinflammatory strategies have affected both antigen-specific and naive immune repertoires. Here we report a novel form of immune intervention that specifically targets recently activated T cells alone. OX40 (CD134) is absent on naive T cells but up-regulated 1–2 d after antigen activation. OX40–immunoglobulin fusion proteins block the interaction of OX40 with its ligand on antigen-presenting cells and eliminate weight loss and cachexia without preventing virus clearance. Reduced proliferation and enhanced apoptosis of lung cells accompanied the improved clinical phenotype. Manipulation of this late costimulatory pathway has clear therapeutic potential for the treatment of dysregulated lung immune responses.


2018 ◽  
Vol 24 (14) ◽  
pp. 1533-1550 ◽  
Author(s):  
Jong-Eun Kim ◽  
Ki Won Lee

Skin is a protective organ and the largest of the human body. Due to its pivotal role in aesthetic appearance, skin health has a significant impact on quality of life. Chronic inflammation of the skin often marks the beginning of various skin diseases. Immune-mediated responses serve to protect the body from external insults and require succinct control, and can lead to ongoing cellular damage and various skin conditions if left unchecked. Studies have shown that phytochemicals can alter processes involved in skin inflammation and alleviate the effects of aging, cancer, atopic dermatitis, psoriasis, and vitiligo. Direct molecular targets of some phytochemicals have been identified and their precise mechanisms of action investigated. In this review, we summarize recent findings on the effects of phytochemicals on skin inflammation and the mechanisms of action involved.


2019 ◽  
Vol 14 (5) ◽  
pp. 442-452 ◽  
Author(s):  
Wenjie Zheng ◽  
Yumin Yang ◽  
Russel Clive Sequeira ◽  
Colin E. Bishop ◽  
Anthony Atala ◽  
...  

Therapeutic effects of Mesenchymal Stem/Stromal Cells (MSCs) transplantation have been observed in various disease models. However, it is thought that MSCs-mediated effects largely depend on the paracrine manner of secreting cytokines, growth factors, and Extracellular Vesicles (EVs). Similarly, MSCs-derived EVs also showed therapeutic benefits in various liver diseases through alleviating fibrosis, improving regeneration of hepatocytes, and regulating immune activity. This review provides an overview of the MSCs, their EVs, and their therapeutic potential in treating various liver diseases including liver fibrosis, acute and chronic liver injury, and Hepatocellular Carcinoma (HCC). More specifically, the mechanisms by which MSC-EVs induce therapeutic benefits in liver diseases will be covered. In addition, comparisons between MSCs and their EVs were also evaluated as regenerative medicine against liver diseases. While the mechanisms of action and clinical efficacy must continue to be evaluated and verified, MSCs-derived EVs currently show tremendous potential and promise as a regenerative medicine treatment for liver disease in the future.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 649
Author(s):  
Luis Alberto Sánchez-Vargas ◽  
Karina Guadalupe Hernández-Flores ◽  
Francisco Javier Cabrera-Jorge ◽  
José María Remes-Troche ◽  
Job Reyes-Huerta ◽  
...  

Celiac disease (CD) is a chronic immune-mediated enteropathy triggered by exposure to dietary gluten in genetically predisposed individuals. In contrast, irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder affecting the large intestine, without an autoimmune component. Here, we evaluated the prevalence of IgA and IgG antibodies to maize zeins (AZA) in patients with CD and IBS. Using an in-house ELISA assay, the IgA and IgG anti-zein antibodies in the serum of 37 newly diagnosed CD (16 biopsy proved and 21 serological diagnosis) and 375 IBS patients or 302 healthy control (HC) subjects were measured. Elevated levels of IgA AZA were found in CD patients compared with IBS patients (p < 0.01) and HC (p < 0.05). CD patients had the highest prevalence (35.1%), followed by IBS (4.3%) and HCs (2.3%) (p < 0.0001). IgG AZA antibodies were not found in any CD patients, IBS patients, or HC subjects. A significant positive correlation was found between IgA AZA with IgA anti-gliadin (AGA, r = 0.34, p < 0.01) and IgA anti-deaminated gliadin peptides (DGP, r = 0.42, p < 0.001) in the celiac disease group. Taken together, our results show for the first time a higher prevalence of AZA IgA antibodies in newly diagnosed CD patients than in IBS patients, confirming a biased immune response to other gliadin-related prolamins such as maize zeins in genetically susceptible individuals.


2017 ◽  
Vol 37 (2) ◽  
pp. 51-70 ◽  
Author(s):  
Muhammad Iqbal ◽  
Saqib Ali ◽  
Ali Haider ◽  
Nasir Khalid

AbstractOrganotin complexes are being extensively studied and screened for their therapeutic potential. Although many recent advances and achievements in this field have been made, the exact mode of action of these complexes is yet to be unveiled. In the present review, an attempt has been made to correlate the therapeutic properties of organotin complexes with their structural features and the environment in which these interact with biological systems. The mechanism, various modes of interaction with biological systems, and physiological target sites of organotin complexes have been highlighted as well.


Physiology ◽  
2005 ◽  
Vol 20 (5) ◽  
pp. 357-365 ◽  
Author(s):  
Elaine M Sinclair ◽  
Daniel J. Drucker

Glucagon is used for the treatment of hypoglycemia, and glucagon receptor antagonists are under development for the treatment of type 2 diabetes. Moreover, glucagon-like peptide (GLP)-1 and GLP-2 receptor agonists appear to be promising therapies for the treatment of type 2 diabetes and intestinal disorders, respectively. This review discusses the physiological, pharmacological, and therapeutic actions of the proglucagon-derived peptides, with an emphasis on clinical relevance of the peptides for the treatment of human disease.


Sign in / Sign up

Export Citation Format

Share Document