scholarly journals Synergistic Antifungal Activity of Chito-Oligosaccharides and Commercial Antifungals on Biofilms of Clinical Candida Isolates

2021 ◽  
Vol 7 (9) ◽  
pp. 718
Author(s):  
Monica Ganan ◽  
Silje B. Lorentzen ◽  
Peter Gaustad ◽  
Morten Sørlie

The development of yeast biofilms is a major problem due to their increased antifungal resistance, which leads to persistent infections with severe clinical implications. The high antifungal activity of well-characterized chitosan polymers makes them potential alternatives for treating yeast biofilms. The activity of a chito-oligosaccharide with a depolymerization degree (DPn) of 32 (C32) and a fraction of acetylation (FA) of 0.15 on Candida sp. biofilms was studied. The results showed a concentration-dependent reduction in the number of viable cells present in C. albicans, C. glabrata, and C. guillermondii preformed biofilms in the presence of C32, especially on intermediate and mature biofilms. A significant decrease in the metabolic activity of yeast biofilms treated with C32 was also observed. The antifungals fluconazole (Flu) and miconazole (Mcz) decreased the number of viable cells in preformed early biofilms, but not in the intermediate or mature biofilms. Contrary to Flu or Mcz, C32 also reduced the formation of new biofilms. Interestingly, a synergistic effect on yeast biofilm was observed when C32 and Flu/Mcz were used in combination. C32 has the potential to become an alternative therapeutic agent against Candida biofilms alone or in combination with antifungal drugs and this will reduce the use of antifungals and decrease antifungal resistance.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2654
Author(s):  
Sam Swingler ◽  
Abhishek Gupta ◽  
Hazel Gibson ◽  
Wayne Heaselgrave ◽  
Marek Kowalczuk ◽  
...  

An increase in antifungal resistance has seen a surge in fungal wound infections in patients who are immunocompromised resulting from chemotherapy, disease, and burns. Human pathogenic fungi are increasingly becoming resistant to a sparse repertoire of existing antifungal drugs, which has given rise to the need to develop novel treatments for potentially lethal infections. Bacterial cellulose (BC) produced by Gluconacetobacter xylinus has been shown to possess many properties that make it innately useful as a next-generation biopolymer to be utilised as a wound dressing. The current study demonstrates the creation of a pharmacologically active wound dressing by loading antifungal agents into a biopolymer hydrogel to produce a novel wound dressing. Amphotericin B is known to be highly hepatotoxic, which reduces its appeal as an antifungal drug, especially in patients who are immunocompromised. This, coupled with an increase in antifungal resistance, has seen a surge in fungal wound infections in patients who are immunodeficient due to chemotherapy, disease, or injury. Antifungal activity was conducted via Clinical & Laboratory Standards Institute (CLSI) M27, M38, M44, and M51 against Candida auris, Candida albicans, Aspergillus fumigatus, and Aspergillus niger. This study showed that thymoquinone has a comparable antifungal activity to amphotericin B with mean zones of inhibition of 21.425 ± 0.925 mm and 22.53 ± 0.969 mm, respectively. However, the mean survival rate of HEp-2 cells when treated with 50 mg/L amphotericin B was 29.25 ± 0.854% compared to 71.25 ± 1.797% when treated with 50 mg/L thymoquinone. Following cytotoxicity assays against HEp-2 cells, thymoquinone showed a 71.25 ± 3.594% cell survival, whereas amphotericin B had a mean cell survival rate of 29.25 ± 1.708%. The purpose of this study was to compare the efficacy of thymoquinone, ocimene, and miramistin against amphotericin B in the application of novel antifungal dressings.


2021 ◽  
Vol 36 (1) ◽  
pp. 14-18
Author(s):  
Forman Erwin Siagian ◽  
Dena Carolina Sabono ◽  
Muhammad Alfarabi

Abstrak Candida sp. dan Cryptococcus sp. merupakan jamur oportunistik yang dapat menyebabkan penyakit pada manusia dan dapat berakibat fatal jika tidak ditangani dengan cepat dan tepat. Saat ini terdapat permasalahan yaitu resistensi antijamur dan jenis terapi terhadap jamur yang terbatas. Terdapatnya bahan alam yang melimpah di Indonesia menjadi suatu potensi untuk mengembangkan obat anti jamur baru yang memiliki efektivitas tinggi, efek samping yang minimal, dan murah. Salah satu bahan alam yang belum tereksplorasi untuk antijamur adalah biji pepaya varietas bangkok. Biji pepaya selama ini lebih banyak menjadi limbah organik. Oleh karena hal tersebut, tujuan dari penelitian ini adalah untuk menguji aktivitas antijamur dari ekstrak biji pepaya bangkok (Carica papaya L.). Jamur yang digunakan pada penelitian ini adalah Candida albicans dan Cryptococcus neoformans. Metode yang digunakan adalah perhitungan zona hambat pada sumur di cawan petri. Hasil penelitian menunjukkan bahwa tidak terdapat zona hambat pada media yang terdapat C. albicans dan C. neoformans.  Dapat disimpulkan, ekstrak biji papaya tidak memiliki aktivitas antijamur terhadap kedua jamur tersebut. Kata kunci: Pepaya bangkok, Antijamur, Bahan alam Abstract Candida sp. and Cryptococcus sp. are opportunistic fungi that can be fatal disease in humans if not treated properly. However, resistance of antifungal drugs have been emerged, therefore limit their benefit for therapy. Many natural products in Indonesia have potential to be established for new antifungal drugs that have high effectiveness, minimal side effects, and inexpensive. Papaya bangkok seed has not been explored for its antifungal activity. This seed become more organic waste. The aim of this study was to test antifungal activity of various papaya bangkok seed extract concentrations. We measured the inhibiton zone of papaya extract to Candida albicans and Cryptococcus neoformans. Result showed no inhibition zone for each seed extract concentrations. Papaya bangkok seed extract has not antifungal activity. Keywords: Papaya bangkok, antifungal, natural product


2019 ◽  
Vol 15 (6) ◽  
pp. 648-658 ◽  
Author(s):  
Manzoor Ahmad Malik ◽  
Shabir Ahmad Lone ◽  
Parveez Gull ◽  
Ovas Ahmad Dar ◽  
Mohmmad Younus Wani ◽  
...  

Background: The increasing incidence of fungal infections, especially caused by Candida albicans, and their increasing drug resistance has drastically increased in recent years. Therefore, not only new drugs but also alternative treatment strategies are promptly required. Methods: We previously reported on the synergistic interaction of some azole and non-azole compounds with fluconazole for combination antifungal therapy. In this study, we synthesized some non-azole Schiff-base derivatives and evaluated their antifungal activity profile alone and in combination with the most commonly used antifungal drugs- fluconazole (FLC) and amphotericin B (AmB) against four drug susceptible, three FLC resistant and three AmB resistant clinically isolated Candida albicans strains. To further analyze the mechanism of antifungal action of these compounds, we quantified total sterol contents in FLC-susceptible and resistant C. albicans isolates. Results: A pyrimidine ring-containing derivative SB5 showed the most potent antifungal activity against all the tested strains. After combining these compounds with FLC and AmB, 76% combinations were either synergistic or additive while as the rest of the combinations were indifferent. Interestingly, none of the combinations was antagonistic, either with FLC or AmB. Results interpreted from fractional inhibitory concentration index (FICI) and isobolograms revealed 4-10-fold reduction in MIC values for synergistic combinations. These compounds also inhibit ergosterol biosynthesis in a concentration-dependent manner, supported by the results from docking studies. Conclusion: The results of the studies conducted advocate the potential of these compounds as new antifungal drugs. However, further studies are required to understand the other mechanisms and in vivo efficacy and toxicity of these compounds.


Author(s):  
Anna Biernasiuk ◽  
Anna Berecka-Rycerz ◽  
Anna Gumieniczek ◽  
Maria Malm ◽  
Krzysztof Z. Łączkowski ◽  
...  

Abstract Recently, the occurrence of candidiasis has increased dramatically, especially in immunocompromised patients. Additionally, their treatment is often ineffective due to the resistance of yeasts to antimycotics. Therefore, there is a need to search for new antifungals. A series of nine newly synthesized thiazole derivatives containing the cyclopropane system, showing promising activity against Candida spp., has been further investigated. We decided to verify their antifungal activity towards clinical Candida albicans isolated from the oral cavity of patients with hematological malignancies and investigate the mode of action on fungal cell, the effect of combination with the selected antimycotics, toxicity to erythrocytes, and lipophilicity. These studies were performed by the broth microdilution method, test with sorbitol and ergosterol, checkerboard technique, erythrocyte lysis assay, and reversed phase thin-layer chromatography, respectively. All derivatives showed very strong activity (similar and even higher than nystatin) against all C. albicans isolates with minimal inhibitory concentration (MIC) = 0.008–7.81 µg/mL Their mechanism of action may be related to action within the fungal cell wall structure and/or within the cell membrane. The interactions between the derivatives and the selected antimycotics (nystatin, chlorhexidine, and thymol) showed additive effect only in the case of combination some of them and thymol. The erythrocyte lysis assay confirmed the low cytotoxicity of these compounds as compared to nystatin. The high lipophilicity of the derivatives was related with their high antifungal activity. The present studies confirm that the studied thiazole derivatives containing the cyclopropane system appear to be a very promising group of compounds in treatment of infections caused by C. albicans. However, this requires further studies in vivo. Key points • The newly thiazoles showed high antifungal activity and some of them — additive effect in combination with thymol. • Their mode of action may be related with the influence on the structure of the fungal cell wall and/or the cell membrane. • The low cytotoxicity against erythrocytes and high lipophilicity of these derivatives are their additional good properties. Graphical abstract


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 655
Author(s):  
Anna Herman ◽  
Andrzej Przemysław Herman

Clinical isolates of Candida yeast are the most common cause of opportunistic fungal infections resistant to certain antifungal drugs. Therefore, it is necessary to detect more effective antifungal agents that would be successful in overcoming such infections. Among them are some herbal products and their active constituents.The purpose of this review is to summarize the current state of knowledge onherbal products and their active constituents havingantifungal activity against drug-resistant Candida sp. used alone and in combination with antifungal drugs.The possible mechanisms of their action on drug-resistant Candida sp. including (1) inhibition of budding yeast transformation into hyphae; (2) inhibition of biofilm formation; (3) inhibition of cell wall or cytoplasmic membrane biosynthesis; (4) ROS production; and (5) over-expression of membrane transporters will be also described.


2021 ◽  
Author(s):  
Rui P. C. L. Sousa ◽  
João C. C. Ferreira ◽  
Maria João Sousa ◽  
M Sameiro Sameiro T T Gonçalves

The search for benzo[a]phenoxazines, Nile Blue derivatives, with high antifungal activity and cell labelling capacity based on our previously published works in this type of compounds, led us to the...


Cosmetics ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 43 ◽  
Author(s):  
Chanun Punyoyai ◽  
Sasithorn Sirilun ◽  
Panuwan Chantawannakul ◽  
Wantida Chaiyana

This study aimed to investigate Malassezia furfur inhibitory activity of the fermented product from Ocimum sanctum and develop an antidandruff shampoo. The fermented product was obtained by the fermentation process of the aerial part of O. sanctum. Total soluble protein was detected in the fermented product with the amount of 65.32 ± 0.14 mg/100 mL, whereas there was no organic acid. The inhibitory activity against four strains of M. furfur (No. 133, 656, 6000, and 7966) of the fermented product and shampoos containing the fermented product were investigated by broth dilution and agar diffusion method, respectively. The fermented product possessed high antifungal activity with the minimum inhibitory concentrations for 50% (MIC50) of M. furfur 133, 656, 6000, and 7966 of 0.125, 0.25, 0.125, and 0.125 mg/mL, respectively. Interestingly, the antifungal activity against M. furfur 656 was comparable to that of ketoconazole. Shampoo formulation C, which was the best formulation in terms of characteristics and stability, obtained a high level of satisfaction scores in terms of hair smoothness, hair shine, ease in combing, frizz reduction, and triboelectric reduction while brushing. Additionally, the shampoo containing 2% (w/w) of the fermented product of O. sanctum also possessed inhibitory activity against M. furfur 133, 656, 6000, and 7966 with inhibition zones of 13.2 ± 1.6, 12.8 ± 1.1, 18.7 ± 0.3, and 17.0 ± 1.1 mm respectively. Therefore, this shampoo was suggested for use as an antidandruff shampoo.


2020 ◽  
Vol 65 (10) ◽  
pp. 82-91
Author(s):  
Phuong Nguyen Anh ◽  
Mai Le Thi Tuyet ◽  
Trung Trieu Anh

Mucormycosis is an uncommon but life-threatening invasive fungal infection, mostly occurs in immunocompromised patients. Lacking the appropriate antifungal drugs is one of the reasons that lead to difficulties in the management of mucormycosis. Curcuma longa has been used traditionally and widely to treat various diseases, including fungal infections. In the search for novel antifungal compounds from natural resources, we evaluated the effect of rhizome crude extract of C. longa on Mucor circinelloides – a causal agent of mucormycosis. The results of screening, using broth dilution method and agar-well diffusion method, showed that the C. longa extract exhibited promising antifungal activity against the fungus M. circinelloides. In liquid medium, C. longa extract decreased the ability of spore germination and the speed of hyphae formation of M. circinelloides decreased by up to approximately 70% and 90%, respectively. Besides, in a solid medium, the crude extract presented similar activity with amphotericin B (400 μg\mL) in decreasing the growth of M. circinelloides by nearly 77%. Moreover, the extract of C. longa also likely to induce the yeast-like type of growth of the dimorphic M. circinelloides in the early stage. These results suggest the plant could be a potential source for further study on biochemical components and the mechanism of its antifungal activity.


mSphere ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Eric H. Jung ◽  
David J. Meyers ◽  
Jürgen Bosch ◽  
Arturo Casadevall

ABSTRACTSimilarities in fungal and animal cells make antifungal discovery efforts more difficult than those for other classes of antimicrobial drugs. Currently, there are only three major classes of antifungal drugs used for the treatment of systemic fungal diseases: polyenes, azoles, and echinocandins. Even in situations where the offending fungal organism is susceptible to the available drugs, treatment courses can be lengthy and unsatisfactory, since eradication of infection is often very difficult, especially in individuals with impaired immunity. Consequently, there is a need for new and more effective antifungal drugs. We have identified compounds with significant antifungal activity in the Malaria Box (Medicines for Malaria Ventures, Geneva, Switzerland) that have higher efficacy than some of the currently used antifungal drugs. Our best candidate, MMV665943 (IUPAC name 4-[6-[[2-(4-aminophenyl)-3H-benzimidazol-5-yl]methyl]-1H-benzimidazol-2-yl]aniline), here referred to as DM262, showed 16- to 32-fold-higher activity than fluconazole againstCryptococcus neoformans. There was also significant antifungal activity in other fungal species with known antifungal resistance, such asLomentospora prolificansandCryptococcus gattii. Antifungal activity was also observed against a common fungus,Candida albicans. These results are important because they offer a potentially new class of antifungal drugs and the repurposing of currently available therapeutics.IMPORTANCEMuch like the recent increase in drug-resistant bacteria, there is a rise in antifungal-resistant strains of pathogenic fungi. There is a need for novel and more potent antifungal therapeutics. Consequently, we investigated a mixed library of drug-like and probe-like compounds with activity inPlasmodiumspp. for activity against two common fungal pathogens,Cryptococcus neoformansandCandida albicans, along with two less common pathogenic species,Lomentospora prolificansandCryptococcus gattii. We uncover a previously uncharacterized drug with higher broad-spectrum antifungal activity than some current treatments. Our findings may eventually lead to a compound added to the arsenal of antifungal therapeutics.


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 692 ◽  
Author(s):  
Marta Szekalska ◽  
Magdalena Wróblewska ◽  
Monika Trofimiuk ◽  
Anna Basa ◽  
Katarzyna Winnicka

Sodium alginate and its oligosaccharides through potential antifungal properties might improve the activity of antifungal drugs enhancing their efficacy and potentially reducing the frequency of application. Mucoadhesive buccal films are oral dosage forms designed for maintaining both local or systemic drug effects and seem to be a very promising alternative to conventional oral formulations. Hence, in this study, mucoadhesive buccal films based on the alginate and its oligosaccharide oligomer composed predominantly of mannuronic acid for the administration of posaconazole-antifungal drug from the azole group were developed. As the polymer gelation method, a relatively new freeze-thaw technique was chosen. All prepared formulations were examined for pharmaceutical tests, swelling, mechanical, and mucoadhesive properties. In addition, the influence of sodium alginate (ALG) and alginate oligosaccharides (OLG) on POS antifungal activity on Candida species was performed. It was observed that film formulation containing 1% ALG and 1% OLG (F2) was characterized by optimal mucoadhesive and swelling properties and prolonged drug release up to 5 h. Additionally, it was shown that OLG affected the growth reduction of all tested Candida spp. The obtained data has opened the way for future research for developing OLG-based dosage forms, which might increase the activity of antifungal drugs.


Sign in / Sign up

Export Citation Format

Share Document