scholarly journals Changes in Soil Features and Phytomass during Vegetation Succession in Sandy Areas

Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 265
Author(s):  
Oimahmad Rahmonov ◽  
Sylwia Skreczko ◽  
Małgorzata Rahmonov

This research was conducted on an area of inland sands characterised by various degrees of overgrowth by vegetation and soil stabilisation. This landscape’s origin is not natural but is connected to human industrial activities dating from early medieval times, which created a powerful centre for mining and metallurgy. This study aims to identify the changes in the above- and belowground phytomass in the initial stages of succession and their influence on the chemical properties and morphology of the soil. It was found that Salix arenaria dominated in primary phytomass production in all plots tested. The amounts of this species found in each community were as follows: 8.55 kg/400 m2 (algae–mosses), 188.97 kg/400 m2 (sand grassland–willow), 123.44 kg/400 m2 (pine–willow–mosses), 14.63 kg/400 m2 (sand grassland–mosses–willow), and 196.55 kg/400 m2 (willow–pine–sand grassland). A notable share of Koeleria glauca was found in the phytomass production of Plots IV (45.73 kg) and V (86.16 kg). Basic soil properties (pH, Corg, Nt), available plant elements (P), and plant nutrients (Ca, Mg, K, P, Fe) beneath the dominant plant species were examined. Soil acidity (pH) varied greatly, ranging from acidic (pH = 3.2) to weakly acidic (pH = 6.3). The content of organic carbon (Corg) in individual plots beneath the dominant species in the humus horizon ranged from 0.28% to 1.42%. The maximum contents of organic carbon and total nitrogen were found in organic (O) and organic-humus (OA) horizons. The highest Pavail content was found in organic and organic-humus horizons, ranging from 10.41 to 65.23 mg/kg, and in mineral horizons under K. glauca (24.10 mg/kg) and Salix acutifola (25.11 mg/kg). The soil features and phytomass were varied differently across individual sites, representing different stages of succession.

2012 ◽  
Vol 36 (5) ◽  
pp. 1620-1628 ◽  
Author(s):  
Gustavo Brunetto ◽  
Jucinei José Comin ◽  
Djalma Eugênio Schmitt ◽  
Renato Guardini ◽  
Célito Pescador Mezzari ◽  
...  

Successive applications of liquid swine waste to the soil can increase the contents of total organic carbon and nutrients and change acidity-related soil chemical properties. However, little information is available on the effects of swine waste application in solid form, as of swine deep-litter. The objective of this study was to evaluate alterations of organic carbon and acidity-related properties of a soil after eight years of pig slurry and deep-litter application. In the eighth year of a field experiment established in Braço do Norte, Santa Catarina (SC) on a sandy Typic Hapludalf samples were taken (layers 0-2.5; 2.5-5; 5-10; 10-15; 15-20 and 20-30 cm) from unfertilized plots and plots with pig slurry or deep-litter applications, providing the simple or double rate of N requirement of Zea mays and Avena strigosa in rotation. Soil total organic carbon, water pH, exchangeable Al, Ca and Mg, and cation exchange capacity (CECeffective and CECpH7.0), H+Al, base saturation, and aluminum saturation were measured. The application of pig slurry and deep-litter for eight years increased total organic carbon and CEC in all soil layers. The pig slurry and deep-litter applications reduced active acidity and aluminum saturation and increased base saturation down to a depth of 30 cm. Eight years of pig slurry application did not affect soil acidity.


Author(s):  
Eugenija Bakšienė ◽  
Antanas Ciūnys

Approx. 1.5 billion m3 of sapropel are accumulated in silty Lithuanian lakes. Sapropel is a valuable organic and limy matter, which can be used for fertilisation and soil improvement. Silted lakes usually require mechanical cleaning, i.e. removal of lake sapropel. Such cleaning was carried out in one of the lakes of Lithuanian – Lake Ilgutis: using a dredge, sapropel was extracted, dried in sediment bowls to 80–85% of humidity, carried to a field and insert into the soil. Summarised results of the long-term experiment showed that calcareous sapropel can reduce soil acidity and increase the amount of exchangeable bases (Ca+Mg). Under the influence of sapropel, the contents of organic carbon and total nitrogen increased as well. The results of investigations demonstrated that by the end of the second (after 12 years), third (after 18 years) and fourth (after 24 years) rotation, the effect of sapropel on soil chemical properties was positive. Compared with limestone, calcareous sapropel improved physical characteristics of the soil to a greater extent. Santrauka Uždumblėjusiuose Lietuvos ežeruose susikaupę apie 1,5 mlrd. m3 sapropelio. Sapropelis, vertinga biogeninė organinė ar kalkinė medžiaga, gali būti plačiai naudojamas dirvoms tręšti ir gerinti. Ežerai, kasant sapropelį iš jų, būtų išvalomi ir pagilinami. Tai padėtų atkurti jų būklę, funkcinę paskirtį. Žemsiurbe MZ-8 buvo kasamas sapropelis iš Ilgučio ežero ir sėsdintuvuose džiovinamas, tada išvežamas į laukus, ir tręšiama dirva. Nustatyta, kad dirvožemio agrocheminės savybės kas rotacija prastėjo, tačiau nepasiekė rodiklių, buvusių prieš bandymų rengimą. Teigiamas sapropelio veikimas pastebėta po antrosios (12 metų), trečiosios (18 metų) ir ketvirtosios (24 metų) sėjomainų rotacijų. Sapropelis laukams tręšti turėjo teigiamos įtakos dirvožemio fizikinėms savybėms. Kalkinis sapropepelis veikė geriau nei klintmilčiai.


2021 ◽  
Vol 11 (15) ◽  
pp. 6982
Author(s):  
Chiara Ferronato ◽  
Gilmo Vianello ◽  
Mauro De Feudis ◽  
Livia Vittori Antisari

The study of Technosols development, spatial distribution and physicochemical characteristics is becoming more and more important in the Anthropocene Era. The aim of the present study was to assess soil features and potential heavy metal release risk of soils developed on different mine tailing types after the waste disposal derived from mining activity in Central Italy. Soils were analyzed for their morphological, physical and chemical properties, and a chemical sequential extraction of heavy metals was performed. The investigated soils were classified as Technosols toxic having in some layer within 50 cm of the soil surface inorganic materials with high concentrations of toxic elements. Our findings showed that the bioavailability of potentially toxic element concentrations in the soil changed according to the origin of the mine tailing. However, because of the acidic pH, there is a serious risk of metals leaching which was reduced where the soil organic matter content was higher.


2017 ◽  
Vol 38 (1) ◽  
pp. 143
Author(s):  
Liane Barreto Alves Pinheiro ◽  
Rodrigo Camara ◽  
Marcos Gervasio Pereira ◽  
Eduardo Lima ◽  
Maria Elizabeth Fernandes Correia ◽  
...  

Mound-building termites are important agents of soil bioperturbation, but these species have not been extensively studied thus far. The present study aimed to evaluate the soil particle-size and the chemical attributes of termite mounds and the surrounding soil under different land use strategies. A one-hectare plot was defined for an unmanaged degraded pasture, planted pasture, and for a eucalyptus Corymbia citriodora plantation. In each plot, the top, center, and base sections of five Cornitermes cumulans mounds, and the surrounding soil at the depths of 0-5; 5-10; 10-20 cm, were sampled in the Pinheiral, Rio de Janeiro state. In the three areas, the center of the mounds contained higher clay content, organic carbon, phosphorous, calcium and magnesium, total bases, and cation exchangeable capacity, when compared to the top, base, and the surrounding soils. However, the center had lower values of exchangeable acidity and potassium, of the three areas. In the eucalyptus plantation, the values of pH, total bases, calcium, and magnesium were lower, whereas aluminum, exchangeable acidity, sodium, and cation exchange capacity were higher both in the mounds and in the surrounding soil, in relation to the pastures. There were no differences among the three areas in terms of organic carbon, potassium, phosphorous, and total bases, in the mounds and adjacent soil. Thus, the termite activity altered the clay content and most of the soil chemical properties in all of the studied areas, but only for the center of the mounds. However, the effect of these organisms was different in the eucalyptus plantation in relation to the pasture areas.


2016 ◽  
Author(s):  
Zhaolian Ye ◽  
Jiashu Liu ◽  
Aijun Gu ◽  
Feifei Feng ◽  
Yuhai Liu ◽  
...  

Abstract. Knowledge on aerosol chemistry in densely populated regions is critical for reduction of air pollution, while such studies haven't been conducted in Changzhou, an important manufacturing base and polluted city in the Yangtze River Delta (YRD), China. This work, for the first time, performed a thorough chemical characterization on the fine particular matter (PM2.5) samples, collected during July 2015 to April 2016 across four seasons in Changzhou city. A suite of analytical techniques were employed to characterize organic carbon / elemental carbon (OC / EC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSIIs), trace elements, and polycyclic aromatic hydrocarbons (PAHs) in PM2.5; in particular, an Aerodyne soot particle aerosol mass spectrometer (SP-AMS) was deployed to probe the chemical properties of water-soluble organic aerosols (WSOA). The average PM2.5 concentrations were found to be 108.3 μg m−3, and all identified species were able to reconstruct ~ 80 % of the PM2.5 mass. The WSIIs occupied about half of the PM2.5 mass (~ 52.1 %), with SO42−, NO3− and NH4+ as the major ions. On average, nitrate concentrations dominated over sulfate (mass ratio of 1.21), indicating influences from traffic emissions. OC and EC correlated well with each other and the highest OC / EC ratio (5.16) occurred in winter, suggesting complex OC sources likely including both secondarily formed and primarily emitted OA. Concentrations of eight trace elements (Mn, Zn, Al, B, Cr, Cu, Fe, Pb) can contribute up to 6.0 % of PM2.5 during winter. PAHs concentrations were also high in winter (140.25 ng m−3), which were predominated by median/high molecular weight PAHs with 5- and 6-rings. The organic matter including both water-soluble and water-insoluble species occupied ~ 20 % PM2.5 mass. SP-AMS determined that the WSOA had an average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), nitrogen-to-carbon (N / C) and organic matter-to-organic carbon (OM / OC) ratios of 0.36, 1.54, 0.11, and 1.74, respectively. Source apportionment of WSOA further identified two secondary OA (SOA) factors (a less oxidized and a more oxidized OA) and two primary OA (POA) factors (a nitrogen enriched hydrocarbon-like traffic OA and a cooking-related OA). On average, the POA contribution overweighed SOA (55 % vs. 45 %), indicating the important role of local anthropogenic emissions to the aerosol pollution in Changzhou. Our measurement also shows the abundance of organic nitrogen species in WSOA, and the source analyses suggest these species likely associated with traffic emissions, which warrants more investigations on PM samples from other locations.


2009 ◽  
Vol 9 (4) ◽  
pp. 379-386 ◽  
Author(s):  
S. A. Baghoth ◽  
M. Dignum ◽  
A. Grefte ◽  
J. Kroesbergen ◽  
G. L. Amy

For drinking water treatment plants that do not use disinfectant residual in the distribution system, it is important to limit availability of easily biodegradable natural organic matter (NOM) fractions which could enhance bacterial regrowth in the distribution system. This can be achieved by optimising the removal of those fractions of interest during treatment; however, this requires a better understanding of the physical and chemical properties of these NOM components. Fluorescence excitation-emission matrix (EEM) and liquid chromatography with online organic carbon detection (LC-OCD) were used to characterize NOM in water samples from one of the two water treatment plants serving Amsterdam, The Netherlands. No disinfectant residual is applied in the distribution system. Fluorescence EEM and LC-OCD were used to track NOM fractions. Whereas fluorescence EEM shows the reduction of humic-like as well as protein-like fluorescence signatures, LC-OCD was able to quantify the changes in dissolved organic carbon (DOC) concentrations of five NOM fractions: humic substances, building blocks (hydrolysates of humics), biopolymers, low molecular weight acids and neutrals.


2016 ◽  
Author(s):  
Abdulaha-Al Baquy ◽  
Jiu-Yu Li ◽  
Chen-Yang Xu ◽  
Khalid Mehmood ◽  
Ren-Kou Xu

Abstract. Soil acidity has become a serious constraint in dry land crop production systems of acidic Ultisols in tropical and subtropical regions of southern China, where winter wheat and canola are cultivated as important rotational crops. Regardless of other common existing concerns in acidic Ultisols of southern China, it needs to be investigated whether soil acidity has any effect on wheat and canola growth. There is little information on the determination of critical soil pH as well as aluminium (Al) concentration for wheat and canola crops. The objective of this study was to determine the critical soil pH and exchangeable aluminium concentration (AlKCl) for wheat and canola production. Two pot cultures with two Ultisols from Hunan and Anhui were conducted for wheat and canola crops in a controlled growth chamber, with a completely randomized design. A soil pH gradient ranging from 3.7 (Hunan) and 3.97 (Anhui) to 6.5, with three replications, was used as a treatment. Aluminium sulfate (Al2(SO4)3) and hydrated lime (Ca(OH)2) were used to obtain the target soil pH levels. Plant height, shoot dry weight, root dry weight, and chlorophyll content (SPAD value) of wheat and canola were adversely affected by soil acidity in both locations. The critical soil pH and AlKCl of the Ultisol from Hunan for wheat were 5.29 and 0.56 cmol kg−1, respectively. At Anhui, the threshold soil pH and AlKCl for wheat were 4.66 and 2.36 cmol kg−1, respectively. On the other hand, the critical soil pH for canola was 5.65 and 4.87 for the Ultisols from Hunan and Anhui, respectively. The critical soil exchangeable Al for canola cannot be determined from the experiment of this study. The results suggested that the critical soil pH and AlKCl varied between different locations for the same variety of crop, due to the different soil types and their other soil chemical properties. The critical soil pH for canola was higher than that for wheat for both Ultisols, thus canola was more sensitive to soil acidity. Therefore, we recommend that liming should be undertaken to increase soil pH if it falls below these critical soil pH levels for wheat and canola production.


2009 ◽  
Vol 7 (3) ◽  
pp. 465-470 ◽  
Author(s):  
Bernardo Baldisserotto ◽  
Carlos Eduardo Copatti ◽  
Levy Carvalho Gomes ◽  
Edsandra Campos Chagas ◽  
Richard Philip Brinn ◽  
...  

Fishes that live in the Amazonian environment may be exposed to several kinds of waters: "black waters", containing high dissolved organic carbon and acidic pH, "white waters", with ten fold higher Ca2+ concentrations than black waters and neutral pH, and "clear waters", with two fold higher Ca2+ concentrations than black waters and also neutral pH. Therefore, the aim of the present study was to analyze Ca2+ fluxes in the facultative air-breather Hoplosternum littorale (tamoatá) exposed to different Amazonian waters. Fishes were acclimated in well water (similar to clear water) and later placed in individual chambers for Ca2+ fluxes measurements. After 4 h, water from the chambers was replaced by a different type of water. Transfer of tamoatás to ion-poor black or acidic black water resulted in net Ca2+ loss only in the first 2 h of experiment. However, transfer from black or acidic black water to white water led to only net Ca2+ influxes. The results obtained allowed us to conclude that transfer of tamoatás to ion-poor waters (black and acidic black water) led to transient net Ca2+ loss, while the amount of Ca2+ in the ion-rich white water seems adequate to prevent Ca2+ loss after transfer. Therefore, transfer of tamoatás between these Amazonian waters does not seem to result in serious Ca2+ disturbance.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7451
Author(s):  
Barbara Breza-Boruta ◽  
Karol Kotwica ◽  
Justyna Bauza-Kaszewska

Properly selected tillage methods and management of the available organic matter resources are considered important measures to enable farming in accordance with the principles of sustainable agriculture. Depending on the depth and intensity of cultivation, tillage practices affect soil chemical composition, structure and biological activity. The three-year experiment was performed on the soil under spring wheat (cv. Tybalt) short-time cultivation. The influence of different tillage systems and stubble management on the soil’s chemical and biological parameters was analyzed. Organic carbon content (OC); content of biologically available phosphorus (Pa), potassium (Ka), and magnesium (Mg); content of total nitrogen (TN), mineral nitrogen forms: N-NO3 and N-NH4 were determined in various soil samples. Moreover, the total number of microorganisms (TNM), bacteria (B), actinobacteria (A), fungi (F); soil respiratory activity (SR); and pH in 1 M KCl (pH) were also investigated. The results show that organic matter amendment is of greater influence on soil characteristics than the tillage system applied. Manure application, as well as leaving the straw in the field, resulted in higher amounts of organic carbon and biologically available potassium. A significant increase in the number of soil microorganisms was also observed in soil samples from the experimental plots including this procedure.


Sign in / Sign up

Export Citation Format

Share Document