scholarly journals The Responses of the Lipoxygenase Gene Family to Salt and Drought Stress in Foxtail Millet (Setaria italica)

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1169
Author(s):  
Qianxiang Zhang ◽  
Yaofei Zhao ◽  
Jinli Zhang ◽  
Xukai Li ◽  
Fangfang Ma ◽  
...  

Plant lipoxygenases (LOXs), a kind of non-heme iron-containing dioxygenases, participate plant physiological activities (especially in response to biotic and abiotic stresses) through oxidizing various lipids. However, there was few investigations on LOXs in foxtail millet (Setaria italica). In this study, we identified the LOX gene family in foxtail millet, and divided the total 12 members into three sub-families on the basis of their phylogenetic relationships. Under salt and drought stress, LOX genes showed different expression patterns. Among them, only SiLOX7 showed up-regulated expression in Yugu1 (YG1) and Qinhuang2 (QH2), two stress-tolerant varieties, indicating that SiLOX7 may play an important role in responses to abiotic stress. Our research provides a basis for further investigation of the role of LOX genes in the adaptation to abiotic stresses and other possible biological functions in foxtail millet.

2021 ◽  
Author(s):  
Xinlei Ma ◽  
Ningwei XU ◽  
Pengpeng Gu ◽  
Liqiang Du ◽  
Zhenqing Guo ◽  
...  

Abstract MADS-box gene family is a key regulatory factor family, which controls vegetative growth, reproductive development and can be used to mediate abiotic stresses in many plants. However, Knowledge of this gene family is still limited in Setaria italica. In the present study, a total of 70 SitMADS genes were identified and renamed on the basis of the chromosomal distribution of the SitMADS genes. According to gene structure, conserved motif and phylogenetic feature, the 70 SitMADSs were classified into type-Ⅰ (Mα, Mβ, Mγ) and type-Ⅱ (MIKCC and MIKC*). All of the SitMADS genes were randomly distributed on nine chromosomes, and five tandem duplicated genes and 12 pairs of duplicated gene segments were detected in the SitMADS genes family. Synteny analysis provided a high homology between SitMADS genes and OsMADS genes. A cis-element analysis inferred that SitMADS genes, except for SitMADS23, possessed at least one drought stress response and ABA(Abscisic Acid)-induced response cis-element. Real-time quantitative PCR analysis was used to detect the expression patterns of SitMADS genes in various tissues and demonstrated that the genes responded drought stress and ABA treatments. SitMADS23, SitMADS42, SitMADS51, SitMADS52, SitMADS58 and SitMADS64 were highly expressed in PEG(Polyethylene glycol) and drought stress, which suggested its important role in drought stress response. SitMADS51, SitMADS63 and SitMADS64 seemed to be responsive to ABA hormone signaling, suggesting that they were involved in the ABA signaling pathways. This paper provided a deep insight into the evolutionary characteristics of SitMADS genes. The results provide comprehensive information for further analyses of the molecular functions of the MADS-box gene family in Setaria italica.


2020 ◽  
Vol 21 (22) ◽  
pp. 8520
Author(s):  
Ling Qin ◽  
Erying Chen ◽  
Feifei Li ◽  
Xiao Yu ◽  
Zhenyu Liu ◽  
...  

Foxtail millet (Setaria italica (L.) P. Beauv) is an important food and forage crop because of its health benefits and adaptation to drought stress; however, reports of transcriptomic analysis of genes responding to re-watering after drought stress in foxtail millet are rare. The present study evaluated physiological parameters, such as proline content, p5cs enzyme activity, anti-oxidation enzyme activities, and investigated gene expression patterns using RNA sequencing of the drought-tolerant foxtail millet variety (Jigu 16) treated with drought stress and rehydration. The results indicated that drought stress-responsive genes were related to many multiple metabolic processes, such as photosynthesis, signal transduction, phenylpropanoid biosynthesis, starch and sucrose metabolism, and osmotic adjustment. Furthermore, the Δ1-pyrroline-5-carboxylate synthetase genes, SiP5CS1 and SiP5CS2, were remarkably upregulated in foxtail millet under drought stress conditions. Foxtail millet can also recover well on rehydration after drought stress through gene regulation. Our data demonstrate that recovery on rehydration primarily involves proline metabolism, sugar metabolism, hormone signal transduction, water transport, and detoxification, plus reversal of the expression direction of most drought-responsive genes. Our results provided a detailed description of the comparative transcriptome response of foxtail millet variety Jigu 16 under drought and rehydration environments. Furthermore, we identify SiP5CS2 as an important gene likely involved in the drought tolerance of foxtail millet.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yang Yang ◽  
Yongmao Chai ◽  
Jiayi Liu ◽  
Jie Zheng ◽  
Zhangchen Zhao ◽  
...  

Abstract Background Amino acid transporters (AATs) plays an essential roles in growth and development of plants, including amino acids long-range transport, seed germination, quality formation, responsiveness to pathogenic bacteria and abiotic stress by modulating the transmembrane transfer of amino acids. In this study, we performed a genome-wide screening to analyze the AAT genes in foxtail millet (Setaria italica L.), especially those associated with quality formation and abiotic stresses response. Results A total number of 94 AAT genes were identified and divided into 12 subfamilies by their sequence characteristics and phylogenetic relationship. A large number (58/94, 62%) of AAT genes in foxtail millet were expanded via gene duplication, involving 13 tandem and 12 segmental duplication events. Tandemly duplicated genes had a significant impact on their functional differentiation via sequence variation, structural variation and expression variation. Further comparison in multiple species showed that in addition to paralogous genes, the expression variations of the orthologous AAT genes also contributed to their functional differentiation. The transcriptomic comparison of two millet cultivars verified the direct contribution of the AAT genes such as SiAAP1, SiAAP8, and SiAUX2 in the formation of grain quality. In addition, the qRT-PCR analysis suggested that several AAT genes continuously responded to diverse abiotic stresses, such as SiATLb1, SiANT1. Finally, combined with the previous studies and analysis on sequence characteristics and expression patterns of AAT genes, the possible functions of the foxtail millet AAT genes were predicted. Conclusion This study for the first time reported the evolutionary features, functional differentiation, roles in the quality formation and response to abiotic stresses of foxtail millet AAT gene family, thus providing a framework for further functional analysis of SiAAT genes, and also contributing to the applications of AAT genes in improving the quality and resistance to abiotic stresses of foxtail millet, and other cereal crops.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wan Zhao ◽  
Li-Li Zhang ◽  
Zhao-Shi Xu ◽  
Liang Fu ◽  
Hong-Xi Pang ◽  
...  

MADS-box transcription factors play vital roles in multiple biological processes in plants. At present, a comprehensive investigation into the genome-wide identification and classification of MADS-box genes in foxtail millet (Setaria italica L.) has not been reported. In this study, we identified 72 MADS-box genes in the foxtail millet genome and give an overview of the phylogeny, chromosomal location, gene structures, and potential functions of the proteins encoded by these genes. We also found that the expression of 10 MIKC-type MADS-box genes was induced by abiotic stresses (PEG-6000 and NaCl) and exogenous hormones (ABA and GA), which suggests that these genes may play important regulatory roles in response to different stresses. Further studies showed that transgenic Arabidopsis and rice (Oryza sativa L.) plants overexpressing SiMADS51 had reduced drought stress tolerance as revealed by lower survival rates and poorer growth performance under drought stress conditions, which demonstrated that SiMADS51 is a negative regulator of drought stress tolerance in plants. Moreover, expression of some stress-related genes were down-regulated in the SiMADS51-overexpressing plants. The results of our study provide an overall picture of the MADS-box gene family in foxtail millet and establish a foundation for further research on the mechanisms of action of MADS-box proteins with respect to abiotic stresses.


2020 ◽  
Author(s):  
Yang Yang ◽  
Yongmao Chai ◽  
Jiayi Liu ◽  
Jie Zheng ◽  
Zhangchen Zhao ◽  
...  

Abstract Background: Amino acid transporters (AATs) plays an essential roles in growth and development of plants, including amino acids long-range transport, seed germination, quality formation, responsiveness to pathogenic bacteria and abiotic stress by modulating the transmembrane transfer of amino acids. In this study, we performed a genome-wide screening to analyze the AAT genes in foxtail millet (Setaria italica L.), especially those associated with quality formation and abiotic stresses response.Results: A total number of 94 AAT genes were identified and divided into 12 subfamilies by their sequence characteristics and phylogenetic relationship. A large number (58/94, 62%) of AAT genes in foxtail millet were expanded via gene duplication, involving 13 tandem and 12 segmental duplication events. Tandemly duplicated genes had a significant impact on their functional differentiation via sequence variation, structural variation and expression variation. Further comparison in multiple species showed that in addition to paralogous genes, the expression variations of the orthologous AAT genes also contributed to their functional differentiation. The transcriptomic comparison of two millet cultivars verified the direct contribution of the AAT genes such as SiAAP1, SiAAP8, and SiAUX2 in the formation of grain quality. In addition, the qRT-PCR analysis suggested that several AAT genes continuously responded to diverse abiotic stresses, such as SiATLb1, SiANT1. Finally, combined with the previous studies and analysis on sequence characteristics and expression patterns of AAT genes, the possible functions of the foxtail millet AAT genes were predicted.Conclusion: This study for the first time reported the evolutionary features, functional differentiation, roles in the quality formation and response to abiotic stresses of foxtail millet AAT gene family, thus providing a framework for further functional analysis of SiAAT genes, and also contributing to the applications of AAT genes in improving the quality and resistance to abiotic stresses of foxtail millet, and other cereal crops.


2020 ◽  
Author(s):  
Yang Yang ◽  
Yongmao Chai ◽  
Jiayi Liu ◽  
Jie Zheng ◽  
Zhangchen Zhao ◽  
...  

Abstract Background: Amino acid transporters (AATs) plays an essential roles in growth and development of plants, including amino acids long-range transport, seed germination, quality formation, responsiveness to pathogenic bacteria and abiotic stress by modulating the transmembrane transfer of amino acids. In this study, we performed a genome-wide screening to analyze the AAT genes in foxtail millet (Setaria italica L.), especially those associated with quality formation and abiotic stresses response.Results: A total number of 94 AAT genes were identified and divided into 12 subfamilies by their sequence characteristics and phylogenetic relationship. A large number (58/94, 62%) of AAT genes in foxtail millet were expanded via gene duplication, involving 13 tandem and 12 segmental duplication events. Tandemly duplicated genes had a significant impact on their functional differentiation via sequence variation, structural variation and expression variation. Further comparison in multiple species showed that in addition to paralogous genes, the expression variations of the orthologous AAT genes also contributed to their functional differentiation. The transcriptomic comparison of two millet cultivars verified the direct contribution of the AAT genes such as SiAAP1, SiAAP8, and SiAUX2 in the formation of grain quality. In addition, the qRT-PCR analysis suggested that several AAT genes continuously responded to diverse abiotic stresses, such as SiATLb1, SiANT1. Finally, combined with the previous studies and analysis on sequence characteristics and expression patterns of AAT genes, the possible functions of the foxtail millet AAT genes were predicted.Conclusion: This study for the first time reported the evolutionary features, functional differentiation, roles in the quality formation and response to abiotic stresses of foxtail millet AAT gene family, thus providing a framework for further functional analysis of SiAAT genes, and also contributing to the applications of AAT genes in improving the quality and resistance to abiotic stresses of foxtail millet, and other cereal crops.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 250 ◽  
Author(s):  
Ruimei Li ◽  
Shuai Yuan ◽  
Yingdui He ◽  
Jie Fan ◽  
Yangjiao Zhou ◽  
...  

Galactinol synthases (GolSs) are the key enzymes that participate in raffinose family oligosaccharides (RFO) biosynthesis, which perform a big role in modulating plant growth and response to biotic or abiotic stresses. To date, no systematic study of this gene family has been conducted in cassava (Manihot esculenta Crantz). Here, eight MeGolS genes are isolated from the cassava genome. Based on phylogenetic background, the MeGolSs are clustered into four groups. Through predicting the cis-elements in their promoters, it was discovered that all MeGolS members act as hormone-, stress-, and tissue-specific related elements to different degrees. MeGolS genes exhibit incongruous expression patterns in various tissues, indicating that different MeGolS proteins might have diverse functions. MeGolS1 and MeGolS3–6 are highly expressed in leaves and midveins. MeGolS3–6 are highly expressed in fibrous roots. Quantitative real-time Polymerase Chain Reaction (qRT-PCR) analysis indicates that several MeGolSs, including MeGolS1, 2, 5, 6, and 7, are induced by abiotic stresses. microRNA prediction analysis indicates that several abiotic stress-related miRNAs target the MeGolS genes, such as mes-miR156, 159, and 169, which also respond to abiotic stresses. The current study is the first systematic research of GolS genes in cassava, and the results of this study provide a basis for further exploration the functional mechanism of GolS genes in cassava.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 315
Author(s):  
Hanzeng Wang ◽  
Xue Leng ◽  
Xuemei Xu ◽  
Chenghao Li

The TIFY gene family is specific to land plants, exerting immense influence on plant growth and development as well as responses to biotic and abiotic stresses. Here, we identify 25 TIFY genes in the poplar (Populus trichocarpa) genome. Phylogenetic tree analysis revealed these PtrTIFY genes were divided into four subfamilies within two groups. Promoter cis-element analysis indicated most PtrTIFY genes possess stress- and phytohormone-related cis-elements. Quantitative real-time reverse transcription polymerase chain reaction (qRT–PCR) analysis showed that PtrTIFY genes displayed different expression patterns in roots under abscisic acid, methyl jasmonate, and salicylic acid treatments, and drought, heat, and cold stresses. The protein interaction network indicated that members of the PtrTIFY family may interact with COI1, MYC2/3, and NINJA. Our results provide important information and new insights into the evolution and functions of TIFY genes in P. trichocarpa.


Sign in / Sign up

Export Citation Format

Share Document