scholarly journals A Convenient and High-Efficient Laser Micro-Engraving Treatment for Controllable Preparation of Microstructure on Al Alloy

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2297
Author(s):  
Mingkai Tang ◽  
Yusheng Shi ◽  
Wenzhi Zhu ◽  
Nan Zhang ◽  
Lichao Zhang

Surface microstructure preparation offers a promising approach for overcoming the shortcomings of Al alloy, such as poor friction resistance, low hardness and weak corrosion resistance to corrosive liquid. Though many methods for the surface microstructure preparation of Al alloy have been developed, it is difficult for most of the reported methods to regulate the as-prepared microstructure, meaning that the properties of Al alloy cannot be improved efficiently by the microstructure. Thus, the application of microstructure surface of Al alloy and microstructure preparation technology is severely limited. Aimed at this issue, a simple, convenient, high-efficient, low-cost micro-scale roughness structure construction approach that is suitable for engineering application (laser micro-engraving) was developed. The as-prepared microstructure on Al alloy surface formed by laser micro-engraving was investigated systemically. The morphology and formation mechanism of the microstructure were examined. Meanwhile, the effect of laser parameters on morphology, geometrical dimensions and composition of microstructure was investigated. The results indicate that the morphology of microstructure is affected by the overlap degree of molten pool greatly. When each molten pool does not overlap with others, successive individual pits can be constructed. When each molten pool overlaps with others for one time, successive overlapping pits will form. As the overlap degree of the molten pool further increases (overlapping with others for more than one time), the successive pits can become grooved. Because of the influence of laser beam pulse frequency and scanning speed on the diameter and distance of the molten pools, the morphology and geometrical dimensions of microstructure can vary greatly with laser parameters. As the laser beam scanning speed increases, the geometrical dimensions of as-prepared microstructure reduce significantly. In contrast, with the increase of laser beam pulse frequency, the geometrical dimensions change in a complicated manner. However, the chemical composition of microstructure is slightly affected by laser parameters. More importantly, a relationship model was successfully established, which could be used to predict and regulate the geometrical dimensions of microstructure treated by laser micro-engraving. Controllable preparation of microstructure on Al alloy is realized, leading that specific microstructure can be prepared rapidly and accurately instead of suffering from long-time experimental investigation in the future.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abid Ullah ◽  
HengAn Wu ◽  
Asif Ur Rehman ◽  
YinBo Zhu ◽  
Tingting Liu ◽  
...  

Purpose The purpose of this paper is to eliminate Part defects and enrich additive manufacturing of ceramics. Laser powder bed fusion (L-PBF) experiments were carried to investigate the effects of laser parameters and selective oxidation of Titanium (mixed with TiO2) on the microstructure, surface quality and melting state of Titania. The causes of several L-PBF parts defects were thoroughly analyzed. Design/methodology/approach Laser power and scanning speed were varied within a specific range (50–125 W and 170–200 mm/s, respectively). Furthermore, varying loads of Ti (1%, 3%, 5% and 15%) were mixed with TiO2, which was selectively oxidized with laser beam in the presence of oxygen environment. Findings Part defects such as cracks, pores and uneven grains growth were widely reduced in TiO2 L-PBF specimens. Increasing the laser power and decreasing the scanning speed shown significant improvements in the surface morphology of TiO2 ceramics. The amount of Ti material was fully melted and simultaneously changed into TiO2 by the application of the laser beam. The selective oxidation of Ti material also improved the melting condition, microstructure and surface quality of the specimens. Originality/value TiO2 ceramic specimens were produced through L-PBF process. Increasing the laser power and decreasing the scanning speed is an effective way to sufficiently melt the powders and reduce parts defects. Selective oxidation of Ti by a high power laser beam approach was used to improve the manufacturability of TiO2 specimens.


2016 ◽  
Vol 869 ◽  
pp. 685-688
Author(s):  
Viviane Teleginski ◽  
Júlio César Gomes Santos ◽  
Daniele Cristina Chagas ◽  
Jéssica Fernanda Azevedo ◽  
Ana Claudia Costa Oliveira ◽  
...  

The high temperature environments where aeronautical turbine blades are exposed makes mandatory the use of ceramic coatings. A bond coat comprised by a MCrAlY alloy (M=Co, Ni) is necessary to match the blade metallic substrate with the ceramic, also acting as a corrosion barrier. The laser treatment of metals and alloys is based in the surface local heating, followed by high cooling rates. The laser parameters such as scanning speed and laser power, plays an important role on the morphological, mechanical and chemical characteristics of the deposited material. In the present investigation, the NiCrAlY deposition was performed in stainless steel substrates with a CO2 laser beam. Different laser parameters of scanning speed and number of scanning cycles were implemented. The samples were characterized by optical microscopy and measurements of Vickers hardness. The results show that it is possible to achieve coatings with high hardness, free of pores or any pronounced defects, metallurgically bonded to the substrate.


Author(s):  
M. Jamshidinia ◽  
F. Kong ◽  
R. Kovacevic

A three-dimensional (3D) numerical model is developed by using control volume method to analyze the effects of the electron beam scanning speed on the temperature distribution and fluid flow of the liquid phase in the electron beam melting® (EBM) of Ti-6Al-4V powder. The numerical calculations are performed by Fluent codes, in which thermal analyses with and without considering fluid flow in the molten pool are compared. A series of experiments are performed with an Electron Beam Melting® machine to verify the numerical accuracy. Compared to thermal analysis without considering convection in the molten pool, a closer numerical prediction of geometrical size of molten pool to the experimental data can be achieved by using thermal and fluid flow modeling. The difference between the melt pool geometry in the two models is due to the consideration of the effects of the outward flow in the fluid flow model caused by surface tension.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 372 ◽  
Author(s):  
Samuel Ligon ◽  
Gurdial Blugan ◽  
Jakob Kuebler

Freestanding SiCNO ceramic pieces with sub-mm features were produced by laser crosslinking of carbosilane and silazane polymer precursors followed by pyrolysis in inert atmosphere. Three different pulsed UV laser systems were investigated, and the influence of laser wavelength, operating power and scanning speed were all found to be important. Different photoinitiators were tested for the two lasers operating at 355 nm, while for the 266 nm laser, crosslinking occurred also without photoinitiator. Pre-treatment of glass substrates with fluorinated silanes was found to ease the release of green bodies during solvent development. Polymer crosslinking was observed with all three of the laser systems, as were bubbles, surface charring and in some cases ablation. By focusing the laser beam several millimeters above the surface of the resin, selective polymer crosslinking was observed exclusively.


2021 ◽  
Vol 2079 (1) ◽  
pp. 012022
Author(s):  
Yongchao Jian ◽  
Yan Shi

Abstract Because of the uneven distribution of reinforcement particles in the molten pool during laser welding of SiCp/6061Al composites with powder, the effect of pulse frequency on the homogenization was studied in this paper. The pulse frequency of welding is changed and the macro morphology of the weld is studied by metallographic microscope. The particle uniformity of reinforcing phase and the porosity of molten pool at different frequencies were compared. The tensile strength of welded joints at different frequencies was tested by universal tensile machine. Finally, when the pulse frequency is 160Hz, the particle distribution of reinforcing phase is the most uniform and the tensile strength is the largest. The tensile strength reaches 267.06MPa, reaching 69.1% of the base metal. When the pulse frequency is 320Hz, the porosity of the weld is the lowest, reaching 1.75%.


2021 ◽  
Author(s):  
Mir Akmam Noor Rashid ◽  
Tanveer Saleh ◽  
Wazed Ibne Noor ◽  
Mohamed Sultan Mohamed Ali

Abstract Laser beam micromachining (LBMM) and micro electro-discharge machining (µEDM) based sequential micromachining technique, LBMM-µEDM has drawn significant research attention to utilizing the advantages of both methods, i.e. LBMM and µEDM. In this process, a pilot hole is machined by the LBMM and subsequently finishing operation of the hole is carried out by the µEDM. This paper presents an experimental investigation on the stainless steel (type SS304) to observe the effects of laser input parameters (namely laser power, scanning speed, and pulse frequency) on the performance of the finishing technique that is the µEDM in this case. The scope of the work is limited to 1-D machining, i.e. drilling micro holes. It was found that laser input parameters mainly scanning speed and power influenced the output performance of µEDM significantly. Our study suggests that if an increased scanning speed at a lower laser power is used for the pilot hole drilling by the LBMM process, it could result in significantly slower µEDM machining time. On the contrary, if the higher laser power is used with even the highest scanning speed for the pilot hole drilling, then µEDM processing time was faster than the previous case. Similarly, µEDM time was also quicker for LBMMed pilot holes machined at low laser power and slow scanning speed. Our study confirms that LBMM-µEDM based sequential machining technique reduces the machining time, tool wear and instability (in terms of short circuit count) by a margin of 2.5 x, 9 x and 40 x respectively in contrast to the pure µEDM process without compromising the quality of the holes.


Author(s):  
Mohit Singh ◽  
Sanjay Mishra ◽  
Vinod Yadava ◽  
J. Ramkumar

Laser beam percussion drilling (LBPD) can create high density holes in aerospace materials with the repeated application of laser pulses at a single spot. In this study, one-parameter-at-a-time approach has been used to investigate the individual effect of peak power, pulse width and pulse frequency on geometrical accuracy and metallurgical distortion during LBPD of 0.85[Formula: see text]mm thick Ti–6Al–4V sheet using 200[Formula: see text]W Yb:YAG fiber laser. It has been found that the output parameters behave differently at the higher and lower values of a particular input process. The increase of pulse width from 1 to 1.50[Formula: see text]ms increases hole taper by 20% whereas the same corresponding change from 1.50 to 2.00[Formula: see text]ms reduces the taper by 20%. The increase of pulse frequency from 10 to 50[Formula: see text]Hz reduces hole circularity by 40% but the same proportionate change from 50 to 90[Formula: see text]Hz reduces circularity by 79%. Increase of peak power from 1.70 to 2.0[Formula: see text]kW increases hole taper by 8% but the corresponding increase from 2 to 2.30[Formula: see text]kW is 143%.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1094 ◽  
Author(s):  
Sayed M. Abo-Dahab ◽  
Ahmed E. Abouelregal ◽  
Marin Marin

The present study utilizes the generalized thermoelasticity theory, with one thermal relaxation time (TR), to examine the thermoelastic problem of a functionally graded thin slim strip (TSS). The authors heated the plane surface bounding using a non-Gaussian laser beam with a pulse length of 2 ps. The material characteristics varied continually based on exponential functions. Moreover, the equations governing the generalized thermoelasticity for a functionally graded material (FGM) are recognized. The problem’s ideal solution was primarily obtained in the Laplace transform (LT) space. The LTs were converted numerically because of the considerable importance of the response in the transient state. For a hypothetical substance, the numerical procedures calculating the displacement, stress, temperature and strain were given. The analogous problem solution to an isotropic homogeneous material was provided by defining the parameter of non-homogeneity adequately. The obtained results were displayed using graphs to illustrate the extent to which non-homogeneity affected displacement, stress, temperature and strain. A comparison was been made between the present study and those previously obtained by others, when the new parameters vanish to show the impact of the non-homogeneity, TSS and laser parameters on the phenomenon. The results obtained indicate a significant strong impact of FGM, TSS and laser parameters.


1995 ◽  
Vol 16 (2) ◽  
pp. 134-137 ◽  
Author(s):  
A. S. Skripnickenko ◽  
A. N. Soldatov ◽  
N. A. Yudin

2014 ◽  
Vol 802 ◽  
pp. 334-337
Author(s):  
C.L. Santos ◽  
G. Vasconcelos ◽  
H.S. Oliveira ◽  
L.G. Oliveira ◽  
J.F. Azevedo ◽  
...  

This study shows the influence of the temperature in the Direct Forming Laser process (DFL) of 316L stainless steel metal powder. Results shows that an increasing in the sample surface temperature can improve the laser beam absorption in the DFL process. A pre-heating in the substrate and in the powder contributed to decrease the time to reach the melting point and to improve the surface roughness. This effect was investigated with constant lasers parameters (scanning speed and intensity) and a heating in the samples in the temperature range of 20oto 200oC. It was possible to evaluate the DFL process and to optimize the quality of the sample surface roughness. These results will benefit the knowledge of the DFL technology that can be applied in the development of turbine blades.


Sign in / Sign up

Export Citation Format

Share Document