scholarly journals Fire-Resistant Sandwich-Structured Composite Material Based on Alternative Materials and Its Physical and Mechanical Properties

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1432 ◽  
Author(s):  
Štěpán Hýsek ◽  
Miroslav Frydrych ◽  
Miroslav Herclík ◽  
Petr Louda ◽  
Ludmila Fridrichová ◽  
...  

The development of composite materials from alternative raw materials, and the design of their properties for the intended purpose is an integral part of the rational management of raw materials and waste recycling. The submitted paper comprehensively assesses the physical and mechanical properties of sandwich composite material made from particles of winter rapeseed stalks, geopolymer and reinforcing basalt lattices. The developed composite panel is designed for use as a filler in constructions (building or building joinery). The observed properties were: bending characteristics, internal bonding, thermal conductivity coefficient and combustion characteristics. The results showed that the density of the particleboard has a significant effect on the resulting mechanical properties of the entire sandwich panel. On the contrary, the density of the second layer of the sandwich panel, geopolymer, did not have the same influence on its mechanical properties as the density of the particleboard. The basalt fibre reinforcement lattice positively affected the mechanical properties of sandwich composites only if it was sufficiently embedded in the structure of the particle board. All of the manufactured sandwich composites resisted flame for more than 13 min and the fire resistance was positively affected by the density of the geopolymer layer.

2011 ◽  
Vol 471-472 ◽  
pp. 391-396 ◽  
Author(s):  
M.A. Azmi ◽  
Hasan Zuhudi Abdullah ◽  
Maizlinda Izwana Idris

In this work, sandwich composite properties were investigated by addition of coconut coir (CC). Fibres in the polyurethane foam cores ranges from 0 to 20 wt.%. Glass fibre reinforced epoxy panels were used as a skin and polyurethane foam as a core, these materials adhesively bonded to keep the whole structure attached with each other. Sandwich composite skins and core-skin bonding were attained via adhesive bonding technique. While polyurethane foam reinforced by coconut coir fibres were manufactured by using one shot process and polyurethane moulding method. Sandwich composite panels with different coir fibres compositions were subjected to the density test, weight per area test and flexural testing in order to investigate their physical and mechanical properties. From the experimental results and analysis, it was found that the sandwich composites with 10 wt.% of coir fibres offer higher mechanical properties.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 857 ◽  
Author(s):  
Hamid R. Taghiyari ◽  
Roya Majidi ◽  
Ayoub Esmailpour ◽  
Younes Sarvari Samadi ◽  
Asghar Jahangiri ◽  
...  

Wood-composite panel factories are in shortage of raw materials; therefore, finding new sources of fibers is vital for sustainable production. The effects of chicken feathers, as a renewable source of natural fibers, on the physicomechanical properties of medium-density fiberboard (MDF) and particleboard panels were investigated here. Wollastonite was added to resin to compensate possible negative effects of chicken feathers. Only feathers of the bodies of chickens were added to composite matrix at 5% and 10% content, based on the dry weight of the raw material, particles or fibers. Results showed significant negative effects of 10%-feather content on physical and mechanical properties. However, feather content of 5% showed some promising results. Addition of wollastonite to resin resulted in the improvement of some physical and mechanical properties. Wollastonite acted as reinforcing filler in resin and improved some of the properties; therefore, future studies should be carried out on the reduction of resin content. Moreover, density functional theory (DFT) demonstrated the formation of new bonds between wollastonite and carbohydrate polymers in the wood cell wall. It was concluded that chicken feathers have potential in wood-composite panel production.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4284
Author(s):  
Lvtao Zhu ◽  
Mahfuz Bin Rahman ◽  
Zhenxing Wang

Three-dimensional integrated woven spacer sandwich composites have been widely used as industrial textiles for many applications due to their superior physical and mechanical properties. In this research, 3D integrated woven spacer sandwich composites of five different specifications were produced, and the mechanical properties and performance were investigated under different load conditions. XR-CT (X-ray computed tomography) images were employed to visualize the microstructural details and analyze the fracture morphologies of fractured specimens under different load conditions. In addition, the effects of warp and weft direction, face sheet thickness, and core pile height on the mechanical properties and performance of the composite materials were analyzed. This investigation can provide significant guidance to help determine the structure of composite materials and design new products according to the required mechanical properties.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 77
Author(s):  
Nurul Emi Nor Ain Mohammad ◽  
Aidah Jumahat ◽  
Mohamad Fashan Ghazali

This paper investigates the effect of nanosilica on impact and energy absorption properties of sandwich foam-fibre composites. The materials used in this study are closed-cell aluminum (Al) foam (as the core material) that is sandwiched in between nanomodified basalt fiber reinforced polymer (as the face-sheets). The face sheets were made of Basalt Fibre, nanosilica and epoxy polymer matrix. The sandwich composite structures are known to have the capability of resisting impact loads and good in absorbing energy. The objective of this paper is to determine the influence of closed-cell aluminum foam core and nanosilica filler on impact properties and fracture behavior of basalt fibre reinforced polymer (BFRP) sandwich composites when compared to the conventional glass fibre reinforced polymer (GFRP) sandwich composites. The drop impact tests were carried out to determine the energy absorbed, peak load and the force-deflection behaviour of the sandwich composite structure material. The results showed that the nanomodified BFRP-Al foam core sandwich panel exhibited promising energy absorption properties, corresponding to the highest specific energy absorption value observed. Also, the result indicates that the Aluminium Foam BFRP sandwich composite exhibited higher energy absorption when compared to the Aluminium foam GFRP sandwich composite.  


2012 ◽  
pp. 189-198 ◽  
Author(s):  
Jelena Petrovic ◽  
Darko Ljubic ◽  
Marina Stamenovic ◽  
Ivana Dimic ◽  
Slavisa Putic

The significance of composite materials and their applications are mainly due to their good properties. This imposes the need for their recycling, thus extending their lifetime. Once used composite material will be disposed as a waste at the end of it service life. After recycling, this kind of waste can be used as raw materials for the production of same material, which raises their applicability. This indicates a great importance of recycling as a method of the renowal of composite materials. This study represents a contribution to the field of mechanical properties of the recycled composite materials. The tension mechanical properties (tensile strength and modulus of elasticity) of once used and disposed glass-epoxy composite material were compared before and after the recycling. The obtained results from mechanical tests confirmed that the applied recycling method was suitable for glass-epoxy composite materials. In respect to the tensile strength and modulus of elasticity it can be further assessed the possibility of use of recycled glass-epoxy composite materials.


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Dendi Prayoga ◽  
. Dirhamsyah ◽  
. Nurhaida

This research aimed to examine the physical and mechanical properties of particle boards based on the composition of raw materials and adhesive content and know the treatment of the composition of raw materials and the best adhesive content and meet the standard JIS A 5908-2003. The research was conducted at Wood Workshop Laboratory, Wood Processing Laboratory Faculty of Forestry,Tanjungpura University and Laboratory of PT. Duta Pertiwi Nusantara Pontianak. The adhesive used is Urea Formaldehyde with 52% Solid Content. Comparison of the composition of rice husks and sengon varies namely rice husk 50%: sengon 50%, rice husk 60%: sengon 40% and rice husk 70%: sengon 30%  and variations in the levels of UF adhesives, namely 14% and 16%, with target density 0,7 gr/cm3. The particleboard was 30 cm x 30 cm x 1 cm Pressing at temperature 140oC for 8 minutes, with  pressure of 25 kg/cm2. The research results of the study of density and moisture content meet the standards JIS A 5908-2003. The best particle values of rice husk and sengon  with composition a ratio of  rice husk 50%: sengon 50% , 16% adhesive content  16%, with density value of  0,7072 gr/cm3, moisture content 9,1949 %, thick development 12,3210 %, water absorption 68,8270 %, MOE 12110,7273 kg/cm2, MOR 161,0025 kg/cm2, firmness sticky 1,9320 kg/cm2, screw holding strength 62,3124 kg.Keywords : adhesive, composition, particle board, rice husk, sengon


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Ridho Pratama ◽  
M Dirhamsyah ◽  
. Nurhaida

This study aims to examine the physical and mechanical properties of gypsum board from Acacia mangium Willd wood waste based on gypsum content and wood powder size. This study refers to the JIS A 5417-1992 standard. This research were conducted at Wood Work Shop laboratory for the preparation of raw materials, Wood Technology laboratory Faculty of Forestry for board making and testing the physical properties of gypsum boards, and  PT. Duta Pertiwi Nusantara laboratory to test the mechanical properties of the gypsum board. The material used is  A. mangium W. Wood powder, gypsum flour, water and borax. The study uses Factorial Completely Randomized Design (CRD) with two factors, namely factor A (gypsum content) which consists of gypsum content of 400%, 500% and 600% of the weight of A. mangium W. wood powder, and factors B (wood powder size) consists of 20 mesh passes 40 mesh retained and 40 mesh passes 60 mesh retained. The results showed that the density (600% gypsum content of 40 and 60 mesh retained wood powder size), moisture content, thickness swelling, MOE (600% gypsum content of 40 and 60 mesh retained wood powder size) fulfill JIS A5417-1992 standard. The best gypsum board is gypsum board with gypsum content of 600% with a wood powder size is 40 mesh.Keyword: Acacia mangium, gypsum board, gypsum content, wood powder size.


2019 ◽  
Vol 34 (1) ◽  
pp. 153-163
Author(s):  
Rui Gou ◽  
Minghui Guo

Abstract Thermoplastic elastomer (TPE), made from ethylene propylene diene monomer (EPDM) and polypropylene (PP) base on reactive blending, has an excellent processing performance and characteristics and a wide range of applications. In this paper, EPDM, PP and ammonium lignosulfonate (AL) were selected as raw materials, wood flour (WF) of poplar tree was used as filler, naphthenic oil was used as plasticizer, DCP vulcanization system with dynamic vulcanization was carried, to make a new kind of composite material. This research studied the influences of wood flour and naphthenic oil content on the microstructure, mechanical properties and rheological properties of the composite material. The result showed: the content of wood flour and naphthenic oil has big impact on composite material. With the increase of the wood flour content, the mechanical properties are increased firstly and then decreased. The viscosity and modulus of the composite is improved with the increase of wood flour. With of the increase of the amount of naphthenic oil, the mechanical properties, viscosity and modulus of the composites decreased. When the content of wood flour is between 30–60 parts and the content of naphthenic oil is less than 20, the EPDM/PP/AL composite is suitable for using as the core layer elastic material of composite floor.


2014 ◽  
Vol 40 (5) ◽  
pp. 7507-7521 ◽  
Author(s):  
Martin Černý ◽  
Martina Halasová ◽  
Jana Schwaigstillová ◽  
Zdeneˇk Chlup ◽  
Zbyneˇk Sucharda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document