scholarly journals Fabrication of Superhydrophobic Magnetic Sawdust as Effective and Recyclable Oil Sorbents

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3432
Author(s):  
Shumin Fan ◽  
Shuai Pei ◽  
Tianyu Shen ◽  
Guangri Xu ◽  
Yuanchao Li ◽  
...  

In this paper, a novel superhydrophobic magnetic sawdust (SMSD) was fabricated as an oil sorbent. The SMSD was functionalized with Fe3O4 nanoparticles using melamine formaldehyde resin (MFR) as a coupling agent and subsequently hydrophobically-treated with hexadecyltrimethoxysilane (HDTMS). The SMSD showed excellent superhydrophobicity with the water contact angle of 155.3 ± 0.9°. Meanwhile it had remarkable environmental durability, long-term stability, and mechanical durable properties. Taking advantage of its magnetic characteristics, the SMSD could be easily controlled to absorb oil to separate oil–water mixtures with high oil absorption capacity and good reusability. Moreover, the emulsion was successfully separated by SMSD, including water-in-oil and oil-in-water emulsions. This study developed an effective oil absorbent, which was low cost and environmentally-friendly.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dingwang Huang ◽  
Lintao Li ◽  
Kang Wang ◽  
Yan Li ◽  
Kuang Feng ◽  
...  

AbstractA highly efficient, low-cost and environmentally friendly photocathode with long-term stability is the goal of practical solar hydrogen evolution applications. Here, we found that the Cu3BiS3 film-based photocathode meets the abovementioned requirements. The Cu3BiS3-based photocathode presents a remarkable onset potential over 0.9 VRHE with excellent photoelectrochemical current densities (~7 mA/cm2 under 0 VRHE) and appreciable 10-hour long-term stability in neutral water solutions. This high onset potential of the Cu3BiS3-based photocathode directly results in a good unbiased operating photocurrent of ~1.6 mA/cm2 assisted by the BiVO4 photoanode. A tandem device of Cu3BiS3-BiVO4 with an unbiased solar-to-hydrogen conversion efficiency of 2.04% is presented. This tandem device also presents high stability over 20 hours. Ultimately, a 5 × 5 cm2 large Cu3BiS3-BiVO4 tandem device module is fabricated for standalone overall solar water splitting with a long-term stability of 60 hours.


Cosmetics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 45
Author(s):  
Eduardo Guzmán ◽  
Laura Fernández-Peña ◽  
Lorenzo Rossi ◽  
Mathieu Bouvier ◽  
Francisco Ortega ◽  
...  

This work analyzes the dispersion of two highly hydrophobic actives, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramidelike molecule) and 2,6-diamino-4-(piperidin-1-yl)pyrimidine 1-oxide (minoxidil), using oil-in-water nanoemulsions with the aim of preparing stable and safe aqueous-based formulations that can be exploited for enhancing the penetration of active compounds through cosmetic substrates. Stable nanoemulsions with a droplet size in the nanometric range (around 200 nm) and a negative surface charge were prepared. It was possible to prepare formulations containing up to 2 w/w% of ceramide-like molecules and more than 10 w/w% of minoxidil incorporated within the oil droplets. This emulsions evidenced a good long-term stability, without any apparent modification for several weeks. Despite the fact that this work is limited to optimize the incorporation of the actives within the nanoemulsion-like formulations, it demonstrated that nanoemulsions should be considered as a very promising tool for enhancing the distribution and availability of hydrophobic molecules with technological interest.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2748 ◽  
Author(s):  
Yasushige Sakamoto ◽  
Yasunori Ayukawa ◽  
Akihiro Furuhashi ◽  
Michimasa Kamo ◽  
Junji Ikeda ◽  
...  

The enhancement of oral epithelial adhesion to the trans-mucosal material of dental implants may improve their long-term stability. The aim of this study is to investigate whether hydrothermal treatment with distilled water (HT-DW) applied to a Ti-6Al-4V (Ti64) alloy could improve epithelial cellular attachment. We hypothesized that this treatment would enhance the adsorption of proteins and the adhesion of gingival epithelial GE1 cells. This treatment changed the surface crystal structure into an anatase type of titanium oxide without an apparent change of surface roughness or topography. Nitrogen was not detected on the HT-DW-treated Ti64, which indicates decontamination. HT-DW-treated Ti64 exhibited a hydrophilic surface with a less than 10° angle of water contact. Adsorption of laminin-332 to the HT-DW-treated Ti64 was significantly greater than that of the untreated Ti64 plates (64). The number of GE1 cells on the HT-DW-treated Ti64 at 1 and 3 days was significantly lower than that on 64; however, cell adhesion strength on HT-DW was greater, with a higher expression of integrin β4, compared with 64. This indicates that the HT-DW treatment of Ti64 improves the integration of GE1 cells, which might facilitate the development of a soft tissue barrier around the implant.


2013 ◽  
Vol 703 ◽  
pp. 111-114
Author(s):  
Yin Lin Wu ◽  
Hai Yan Zhao ◽  
Fu Shen Li

The fabrication and operation of a new thick film type of limiting current oxygen sensor is demonstrated that utilizes yttria (8% mol) stabilized zirconia (YSZ) as oxygen ion conducting solid electrolytes and dense La0.8Sr0.2CoO3(LSC) as diffusion barrier. The oxygen sensor shows a near linear response between 0 to 10.5% O2in argon at 1023K. The advantages of the sensor are simple construction, low cost and potential long term stability.


2008 ◽  
Vol 368-372 ◽  
pp. 263-264
Author(s):  
Yin Lin Wu ◽  
Ling Wang ◽  
Fu Shen Li ◽  
Yan Qin Zhao

A thick film type of limiting current oxygen sensor which uses yttria (8% mol) stabilized zirconia (YSZ) as oxygen ion conducting solid electrolytes and dense La0.8Sr0.2MnO3 (LSM) as diffusion barrier was developed successfully. The oxygen sensor showed excellent performance at oxygen concentrations ranging from 0 to 10 ppm. The advantages of the sensor are simple construction, low cost and potential long term stability.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3344
Author(s):  
De Liu ◽  
Shiying Wang ◽  
Tao Wu ◽  
Yujiang Li

The influence of different coupling agents and coupling times on the wettability of a polyurethane (PU) sponge surface were optimized. Octadecyltrichlorosilane (OTS) was selected as the optimal coupling agent to prepare the superhydrophobic sponge. The superhydrophobic sponge was prepared in one step, which has the advantages of simple operation and enhanced durability. The superhydrophobic sponge was characterized by scanning electron microscopy, Teclis Tracker tensiometry, and Fourier transform infrared (FT-IR) spectrophotometry. The water contact angle increased from 64.1° to 151.3°, exhibiting ideal superhydrophobicity. Oils and organic solvents with different viscosities and densities can be rapidly and selectively absorbed by superhydrophobic sponges, with an absorption capacity of 14.99 to 86.53 times the weight of the sponge itself, without absorbing any water. Since temperature affects the viscosity and ionic strength of oil, and influences the surface wettability of the sponges, the effect of temperature and ionic strength on the oil absorption capacity of the superhydrophobic sponges was measured, and its mechanism was elucidated. The results showed that the absorptive capacity retained more than 90% of the initial absorptive capacity after repeated use for 10 times. Low-cost, durable superhydrophobic sponges show great potential for large-scale oil-water separation.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 553 ◽  
Author(s):  
Limin Ruan ◽  
Yanjie Zhao ◽  
Zihao Chen ◽  
Wei Zeng ◽  
Siliang Wang ◽  
...  

The thermoelectric (TE) fiber, based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), which possesses good flexibility, a low cost, good environmental stability and non-toxicity, has attracted more attention due to its promising applications in energy harvesting. This study presents a self-powered flexible sensor based on the TE properties of the hollow PEDOT:PSS fiber. The hollow structure of the fiber was synthesized using traditional wet spinning. The sensor was applied to an application for finger touch, and showed both long-term stability and good reliability towards external force. The sensor had a high scalability and was simple to develop. When figures touched the sensors, a temperature difference of 6 °C was formed between the figure and the outside environment. The summit output voltages of the sensors with 1 to 5 legs gradually increased from 90.8 μV to 404 μV. The time needed for the output voltage to reach 90% of its peak value is only 2.7 s. Five sensors of legs ranging from 1 to 5 were used to assemble the selector. This study may provide a new proposal to produce a self-powered, long-term and stable skin sensor, which is suitable for wearable devices in personal electronic fields.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5035
Author(s):  
Nikolaos Naziris ◽  
Natassa Pippa ◽  
Costas Demetzos

Lipidic vehicles are novel industrial products, utilized as components for pharmaceutical, cosmeceutical and nutraceutical formulations. The present study concerns a newly invented method to produce lipidic vehicles in the nanoscale that is simple, nontoxic, versatile, time-efficient, low-cost and easy to scale up. The process is a modification of the heating method (MHM) and comprises (i) providing a mixture of an amphiphilic lipid and a charged lipid and/or a fluidity regulator in a liquid medium composed of water and a liquid polyol, (ii) stirring and heating the mixture in two heating steps, wherein the temperature of the second step is higher than the temperature of the first step and (iii) allowing the mixture to cool down to room temperature. The process leads to the self-assembly of nanoparticles of small size and good homogeneity, compared with conventional approaches that require additional size reduction steps. In addition, the incorporation of bioactive molecules, such as drugs, inside the nanoparticles is possible, while lyophilization of the products provides long-term stability. Most importantly, the absence of toxic solvents and the simplicity guarantee the safety and scalability of the process, distinguishing it from most prior art processes to produce lipidic vehicles.


2012 ◽  
Vol 463-464 ◽  
pp. 349-353 ◽  
Author(s):  
Feng Guo ◽  
Xun Jia Su ◽  
Gen Liang Hou ◽  
Zhao Hui Liu ◽  
Hai Peng Jia

Superhydrophobic surfaces have been a hot topic during the last decade owing to their great potential in widely application. In this work, we report on a facile and low-cost two-step method to fabricate superhydrophobic surface on steel substrates. The as-obtained surface shows an interesting hierarchical structure composed of microscale flowerlike cluster and nanoscale particles, which is similar to that of a lotus leaf. After further modification with stearic acid, the resultant surface exhibits remarkable superhydrophobic properties. The water contact angle is as high as 155°. Moreover, the superhydrophobic properties are long-term stable.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 386
Author(s):  
Simone M. P. Meroni ◽  
Carys Worsley ◽  
Dimitrios Raptis ◽  
Trystan M. Watson

Perovskite solar cells (PSCs) have already achieved comparable performance to industrially established silicon technologies. However, high performance and stability must be also be achieved at large area and low cost to be truly commercially viable. The fully printable triple-mesoscopic carbon perovskite solar cell (mCPSC) has demonstrated unprecedented stability and can be produced at low capital cost with inexpensive materials. These devices are inherently scalable, and large-area modules have already been fabricated using low-cost screen printing. As a uniquely stable, scalable and low-cost architecture, mCPSC research has advanced significantly in recent years. This review provides a detailed overview of advancements in the materials and processing of each individual stack layer as well as in-depth coverage of work on perovskite formulations, with the view of highlighting potential areas for future research. Long term stability studies will also be discussed, to emphasise the impressive achievements of mCPSCs for both indoor and outdoor applications.


Sign in / Sign up

Export Citation Format

Share Document