scholarly journals Wood Bottom Ash and GeoSilex: A By-Product of the Acetylene Industry as Alternative Raw Materials in Calcium Silicate Units

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 489
Author(s):  
Manuel Angel Felipe-Sesé ◽  
Luis Pérez-Villarejo ◽  
Eulogio Castro ◽  
Dolores Eliche-Quesada

The main objective of this research was to obtain calcium silicate units from alternative raw materials, such as the bottom ashes from the combustion of wooden boards (WBA), as a source of silica, and GeoSilex (G), a by-product with low energy and environmental costs generated in the manufacture of acetylene, as a source of lime. Once the raw materials were physically, mineralogically and chemically characterized, calcium silicate units were obtained by mixing different amounts of WBA residue (90–20 wt%) and G by-product (10–80 wt%). The mixtures were compressed at 10 MPa and cured in water for 28 days. The calcium silicate units were subjected to a wide experimental program that included the determination of physical properties (bulk density, apparent porosity and water absorption), mechanical properties (compressive strength), and thermal properties (thermal conductivity). Optimum values are obtained for calcium silicate units that contain a 1/1 WBA/G weight ratio, which have an optimal amount of SiO2 and CaO for the cementation reaction. The 50WBA-50g units have compressive strength values of 46.9 MPa and a thermal conductivity value of 0.40 W/mK. However, all calcium silicate units obtained comply with the European Standard EN 771-2: 2011 to be used as structural building materials.

2020 ◽  
Vol 22 (1) ◽  
pp. 69
Author(s):  
Joanna Paciorek-Sadowska ◽  
Marcin Borowicz ◽  
Ewelina Chmiel ◽  
Jacek Lubczak

Two polyol raw materials were obtained in the conducted research, one based on metasilicic acid (MSA), the other based on poly(lactic acid) (PLA) waste. The obtained polyols were characterized in terms of their applicability for the production of rigid polyurethane foams (RPUFs). Their basic analytical properties (hydroxyl number, acid number, elemental analysis) and physicochemical properties (density, viscosity) were determined. The assumed chemical structure of the obtained new compounds was confirmed by performing FTIR and 1H NMR spectroscopic tests. Formulations for the synthesis of RPUFs were developed on the basis of the obtained research results. A mixture of polyols based on MSA and PLA in a weight ratio of 1:1 was used as the polyol component in the polyurethane formulation. The reference foam in these tests was a foam that was synthesized only on the basis of MSA-polyol. The obtained RPUFs were tested for basic functional properties (apparent density, compressive strength, water absorption, thermal conductivity coefficient etc.). Susceptibility to biodegradation in soil environment was also tested. It was found that the use of mixture of polyols based on MSA and PLA positively affected the properties of the obtained foam. The polyurethane foam based on this polyol mixture showed good thermal resistance and significantly reduced flammability in comparison with the foam based MSA-polyol. Moreover, it showed higher compressive strength, lower thermal conductivity and biodegradability in soil. The results of the conducted tests confirmed that the new foam was characterized by very good performance properties. In addition, this research provides information on new waste management opportunities and fits into the doctrine of sustainable resource management offered by the circular economy.


2020 ◽  
Vol 315 ◽  
pp. 07008
Author(s):  
Aleksandr Bakhtin ◽  
Nikolai Lyubomirskiy ◽  
Sergey Fedorkin ◽  
Tamara Bakhtina

The paper presents research on the development of building materials with low level of CO2 emissions based on technogenic recycled materials. The paper addresses the determination of optimal formulation and technological parameters of obtaining materials based on lime dust generated by mechanical deposition in cyclones and bag filters of shaft furnaces, as well as finely dispersed marble limestone with a fraction of up to 5 mm. Studies have shown that it is possible to obtain carbonized material with compressive strength of more than 40 MPa from this recycled material by forced carbonization used during three hours. Moreover, to obtain such numbers, the optimal content of lime dust in raw materials should be in the range of 35-40% wt. when the water content of the mixture is 6-7% wt. The carbonized material obtained with the indicated technological parameters will have an average density of 1.95-2.0 g/cm3 and water absorption by weight of not more than 12%.


2013 ◽  
Vol 357-360 ◽  
pp. 1082-1085 ◽  
Author(s):  
Kamarul Aini Mohd Sari ◽  
Sohif Mat ◽  
Khairiah Haji Badri ◽  
Muhammad Fauzi Mohd Zain

An experimental program was performed to obtain the density, compressive strength, and thermal conductivity of palm-based lightweight concrete. Palm-based polyurethane (PU) particles were used as lightweight aggregates in creating concrete systems. Concrete systems contain palm kernel oil-based polyol (PKO-p) reacted with 2,4-methylene diphenyl diisocyanate (MDI). In this study, polymer concrete was improved to achieve the optimum level of PU with the lowest possible density. The PU particles in the concrete mixture comprised of 1% to 5% w/w with density of less than 1800 kg/m3. The PU particles were 5 mm in size. The ratio of PKO-p to MDI was set at 1:1 and the loading of the concrete mixture was set at 3% w/w to produce lightweight concrete. The resulting concrete has excellent compressive strength (17.5 MPa) and thermal conductivity (0.24 W/mK). Results show that the PU particle dosage has the most significant effect on the physical and mechanical properties of concrete.


2014 ◽  
Vol 32 (5) ◽  
pp. 397-405
Author(s):  
Md. Obaidul Haque ◽  
Ahmed Sharif

Informal incineration or open pit burning of waste materials is a common practice in the peripheral area of Dhaka, one of the fastest growing mega-cities in the world. This study deals with the effect of open pit burned (i.e. open burned) household waste bottom ash on fired clay bricks. Between 0 to 50% (by weight) of open pit burned household waste bottom ash was mixed with clay to make bricks. The molded specimens were air-dried at room temperature for 24 h and then oven dried at 100 °C for another 24 h to remove the water. The raw bricks were fired in a muffle furnace to a designated temperature (800, 900 and 1000 °C, respectively). The firing behaviour (mechanical strength, water absorption and shrinkage) was determined. The microstructures, phase compositions and leachates were evaluated for bricks manufactured at different firing temperatures. These results demonstrate that open pit burned ash can be recycled in clay bricks. This study also presents physical observations of the incinerated ash particles and determination of the chemical compositions of the raw materials by wet analysis. Open pit burned ash can be introduced easily into bricks up to 20% wt. The concentrations of hazardous components in the leachates were below the standard threshold for inert waste category landfill and their environmental risk during their use-life step can be considered negligible.


2019 ◽  
Vol 828 ◽  
pp. 14-17
Author(s):  
Malgorzata Ulewicz ◽  
Jakub Jura

The preliminary results of utilization of fly and bottom ash from combustion of biomass for the produce of cement mortars has been presented. Currently, this waste are deposited in industrial waste landfills. The chemical composition of waste materials was determined using X-ray fluorescence (spectrometer ARL Advant 'XP). ). In the studies sand was replaced by mix of fly and bottom ash from the combustion of biomass in an amount of 10-30% by weight of cement CEM I 42.5 R (Cemex). The obtained cement mortar concrete were subjected to microscopic examination (LEO Electron Microscopy Ltd.) and their compressive strength (PN-EN-196-1), frost resistance (PN-EN 1015-11 and PN-B -04500 ) and absorbability (PN-85/B-04500) were identified. The obtained results showed, the replacement of the cement by mix ashes from combustion of biomass reduce consumption of raw materials and will have a good influence on the environment.


2012 ◽  
Vol 204-208 ◽  
pp. 4101-4104 ◽  
Author(s):  
Tzong Ruey Yang ◽  
Ta Peng Chang ◽  
Chun Tao Chen ◽  
Yuan Kai Lee ◽  
Bo Tsun Chen

In this paper, the metakaolin is used as the raw material with aluminosilicate compounds to produce the geopolymer. The effects of three levels of two major controlling factors, the degree of polymerization of the activating solution (weight ratio of SiO2 to Na2O) of 0.4, 0.7 and 1.0 and the weight ratio of liquid to solid (L/S) of 0.7, 0.85 and 1.00 on the engineering properties of geopolymer are investigated. The experimental results show that, at age of 28 days, the compressive strength increases from the lowest 37.33 MPa (SiO2/Na2O = 0.4 and L/S = 0.7) to the highest 71.21 MPa (SiO2/Na2O = 0.7 and L/S = 0.7). While, the thermal conductivity increases from the lowest 0.39 w/mk (SiO2/Na2O = 0.4 and L/S = 1.0) to the highest 0.761 w/mk (SiO2/Na2O = 1.0 and L/S = 0.7).


2013 ◽  
Vol 662 ◽  
pp. 331-334
Author(s):  
Huan Qi Zhao ◽  
Guo Zhong Li

Cement-based lightweight insulation materials were made. Cement and fly ash are main raw materials. The self-developed composite excitation agent and foaming agent are used. The method of foaming is the physical foaming. The inflection of fiber dosage on the performance of lightweight insulation materials was researched. Its influencing mechanism was discussed. Experiments show that foaming lightweight insulation materials were made with 1.22MPa bending strength, 2.95MPa compressive strength and the 0.072W/mk coefficient of thermal conductivity when the fiber mixing content is 1.2%.


Author(s):  
Viola Hospodarova ◽  
Nadezda Stevulova ◽  
Vojtech Vaclavik ◽  
Tomas Dvorsky ◽  
Jaroslav Briancin

Nowadays, construction sector is focusing in developing sustainable, green and eco-friendly building materials. Natural fibre is growingly being used in composite materials. This paper provides utilization of cellulose fibres as reinforcing agent into cement composites/plasters. Provided cellulosic fibres coming from various sources as bleached wood pulp and recycled waste paper fibres. Differences between cellulosic fibres are given by their physical characterization, chemical composition and SEM micrographs. Physical and mechanical properties of fibre-cement composites with fibre contents 0.2; 0.3and 0.5% by weight of filler and binder were investigated. Reference sample without fibres was also produced. The aim of this work is to investigate the effects of cellulose fibres on the final properties (density, water absorbability, coefficient of thermal conductivity and compressive strength) of the fibrecement plasters after 28 days of hardening. Testing of plasters with varying amount of cellulose fibres (0.2, 0.3 and 0.5 wt. %) has shown that the resulting physical and mechanical properties depend on the amount, the nature and structure of the used fibres. Linear dependences of compressive strength and thermal conductivity on density for plasters with cellulosic fibres adding were observed.


2014 ◽  
Vol 1054 ◽  
pp. 71-74 ◽  
Author(s):  
Pavel Reiterman ◽  
Vít Bäumelt

Paper is focused on the determination of sorption properties of mortars modified by sealing admixture. Ability of building materials to transport water has an important influence to other properties, predominantly durability. Realized experimental program introduces results of long-term measurements of transport properties presented by capillary absorbability.


1992 ◽  
Vol 00 (8) ◽  
pp. 4-4 ◽  
Author(s):  
Eric A. Draper ◽  
Jan Skalny

The need for continued rehabilitation of our concrete infrastructure has lead to the adaptation of modern “state-of-the-art” analytical methods for the characterization of concrete and other cementitious materials. Some of these techniques have not, until relatively recently, been commonly associated with the evaluation of concrete but are very useful both as tools for quality assurance and in the determination of the extent of existing damage. The technique of interest here is the coordinated electron-optical microscopic evaluation of concrete.Concrete is the most widely used building material in the world. Contrary to popular belief, concrete is not inert but chemically very complex and dynamic. While it is true that, pound for pound, concrete and its raw materials (cement, aggregate and water} are the most inexpensive building materials available for construction, it is also true that it responds to its environment in numerous and sometimes very subtle ways. These responses may sometimes result in a loss of durability and tremendous amounts of time and money being expended while searching for the cause(s) of the problem and providing a cost-effect solution A quick survey of any large metropolitan area and the on-going construction repairs to highways and bridge decks there will quickly confirm this.


Sign in / Sign up

Export Citation Format

Share Document