scholarly journals Effect of Y Addition on the Microstructure and Mechanical Properties of ZM31 Alloy

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 583 ◽  
Author(s):  
Xue Ye ◽  
Hongshuai Cao ◽  
Fugang Qi ◽  
Xiaoping Ouyang ◽  
Zhisong Ye ◽  
...  

Effects of different Y contents (0, 0.3, 0.7, 1.5, 3, 5 and 10 wt.%) on the microstructure, thermal stability and mechanical properties of Mg-3Zn-1Mn (ZM31) alloys were systematically studied. The existence form and action mechanism of Y in the experimental alloys were investigated. The results revealed that with the change of Y content, the main phases of the ZM31-xY alloys changed from Mg7Zn3 phase, I-phase, I + W-phase, W-phase, W + LPSO phase to LPSO phase. When Y content was low (≤1.5%), hot extrusion could break up the residual phases after homogenization to form dispersed fine rare-earth phase particles, and fine second phases would also precipitate in the grain, which could inhibit the grain growth. When Y content was high (≥3%), the experimental alloys were only suitable for high-temperature extrusion due to the formation of the high heat stable rare-earth LPSO phase. In addition, Y could evidently enhance the mechanical properties of the as-extruded ZM31 alloy, of which the ZM31-10Y alloy had the best mechanical properties, that is, the tensile and yield strengths are 403 MPa and 342 MPa. The high strengths of the alloys were mainly determined by fine grain strengthening, rare-earth phase strengthening and dispersion strengthening of fine α-Mn particles.

2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
Katsuyoshi Kondoh ◽  
Thotsaphon Threrujirapapong ◽  
Hisashi Imai ◽  
Junko Umeda ◽  
Bunshi Fugetsu

By using pure titanium powder coated with unbundled multiwall carbon nanotubes (MWCNTs) via wet process, powder metallurgy (P/M) titanium matrix composite (TMC) reinforced with the CNTs was prepared by spark plasma sintering (SPS) and subsequently hot extrusion process. The microstructure and mechanical properties of P/M pure titanium and reinforced with CNTs were evaluated. The distribution of CNTs and in situ formed titanium carbide (TiC) compounds during sintering was investigated by optical and scanning electron microscopy (SEM) equipped with EDS analyzer. The mechanical properties of TMC were significantly improved by the additive of CNTs. For example, when employing the pure titanium composite powder coated with CNTs of 0.35 mass%, the increase of tensile strength and yield stress of the extruded TMC was 157 MPa and 169 MPa, respectively, compared to those of extruded titanium materials with no CNT additive. Fractured surfaces of tensile specimens were analyzed by SEM, and the uniform distribution of CNTs and TiC particles, being effective for the dispersion strengthening, at the surface of the TMC were obviously observed.


2012 ◽  
Vol 186 ◽  
pp. 279-282 ◽  
Author(s):  
Anna Kula ◽  
Ludwik Blaz ◽  
Makoto Sugamata

Rapid solidification (RS) of Al-2Fe-2Ni-5Mg alloy and following mechanical consolidation of powders by means of powder metallurgy (PM) methods was used with success to produce a bulk RS-material. RS powders were manufactured using an inert gas atomizing of the molten alloy and the spray deposition on the rotating water-cooled copper roll. Rods of 7 mm in diameter were received by means of the cold pressing of the flakes, vacuum degassing and hot extrusion method. For comparison purposes, the conventionally casted and hot extruded Al-2Fe-2Ni-5Mg alloy was tested as well. Mechanical properties of as-extruded materials were examined at 293 K – 873 K by compression tests performed at constant true strain rate of 5·10-3[s-1]. It was found that relatively high strength of as-extruded RS/PM material was accompanied by the high ductility of the samples deformed by hot compression tests. It was noticed that the most effective solution strengthening due to particles refining was observed at low deformation temperatures. Rising the test temperatures above ~ 420 K, was found to result in reduction of the flow stress to the values received for the industrial material (IM).The formation of coarse primary intermetallic compounds, which is typical for IM material, was effectively reduced for RS material. However some inhomogeneity of fine precipitates distribution in RS/PM material was observed. Nevertheless, it was considered that both solid solution hardening due to Mg addition and the dispersion strengthening due to refining of intermetallic compounds substantially increase the mechanical properties of the RS/PM material.


2021 ◽  
Vol 410 ◽  
pp. 587-592
Author(s):  
Gulgena D. Shakirova ◽  
Natalya V. Romanova ◽  
Lenar N. Shafigullin

The paper provides the results of the studies on the influence of high temperatures and aggressive media on the performance properties of O-rings having one name but made by different manufacturers. O-rings by supplier No. 1 are made from fluorosilicone rubber, and O-rings by supplier No. 2 are made from fluororubber. The analysis of O-rings showed that the color of O-rings made from fluorosilicone rubber changed and their physical mechanical properties decreased after operation when subjected to G-energy Si-OAT and G-energy SNF coolants. The comparative analysis of TGA curves of O-rings showed that O-rings made from fluororubber were more heat stable than O-rings made from fluorosilicone rubber, i.e. they can withstand higher operating temperatures in an air atmosphere. Fluoroelastomers can recover quickly and are used to manufacture products which should have a high heat resistance during operation and high resistance to aggressive coolants.


2013 ◽  
Vol 765 ◽  
pp. 521-524 ◽  
Author(s):  
Zhong Yang ◽  
Jian Ping Li ◽  
Yan Rong Wang ◽  
Bi Wei Xiong

The microstructure characteristics and mechanical properties of as-cast and hot extruded Mg-5Gd-4Y-0.5Zn-0.5Zr (GWZ540) alloy were investigated. The results show that coarse the as-cast GWZ540 alloy consisted of α-Mg grain and two second phases, disc-like Mg5(Zn0.2Y0.2Gd0.6) and block-shaped Mg24(Y0.6Gd0.4)5. Hot extrusion resulted in a significant refinement of the α-Mg grains and a uniform distribution of the second phases, but with little effect on the composition and structure of the second phases. It is also shown that GWZ540 alloy exhibits higher UTS and TYS and elongation at both room and elevated temperature than those of WE54 alloy.


2009 ◽  
Vol 618-619 ◽  
pp. 495-499 ◽  
Author(s):  
Katsuyoshi Kondoh ◽  
Thotsaphon Threrujirapapong ◽  
Junko Umeda ◽  
Hisashi Imai ◽  
Bunshi Fugetsu

Powder metallurgy (P/M) titanium matrix composite (TMC) reinforced with multi-wall carbon nanotube (MWCNT) was prepared by spark plasma sintering (SPS) and hot extrusion process, where the powder surface was coated by un-bundled CNTs via wet process. The microstructure and mechanical properties of P/M pure titanium and reinforced with CNTs were evaluated. The distribution of CNTs and in-situ formed titanium carbide (TiC) compounds during sintering was investigated by optical and scanning electron microscopy (SEM) equipped with EDS analyser. The mechanical properties of TMC were significantly improved by adding a small amount of CNTs. For example, when employing the pure titanium composite powder coated with CNTs of 0.35 mass%, the increase of tensile strength and yield stress of the extruded TMC was 157 MPa and 169 MPa, respectively, compared to those of extruded titanium materials with no CNT additive. Fractured surfaces of specimens were analysed by SEM, and the uniform distribution of CNTs and TiC particles, being effective for the dispersion strengthening, at the surface of the TMC were obviously observed.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Linhui ZHANG ◽  
Xiaoshu KANG ◽  
Binnian ZHONG

Because of high strength and low breaking rate, 8079 aluminum alloy has become the main material of double zero aluminum foil. However, there are still many problems in the manufacturing process, such as broken belt, pinhole and so on. As the main influencing element, Si has a great influence on the alloy. In this work, the influences of Si with various contents on microstructural evolution and mechanical properties of 8079 aluminum alloy were analyzed by energy dispersive spectrometer (EDS), optical microscope (OM), X-Ray diffraction analyzer (XRD), universal testing machine and Vickers hardness tester. The results showed that the primary Si phase was tiny and dispersed in the alloy when the content of Si is less than 1.3%. As the second phases dispersion strengthening, the Si phase can improve the strength of the alloy. However, when the Si content was too high, the Si phase increased and coarsened. Meanwhile, Fe-rich phase which increased by Si decreased the fine grain strengthening and the second phases strengthening mechanism. The coarse Si phase and the Fe-rich phase are brittle phase, which are easy to become the crack source in the process of material deformation and reduce the strength and toughness of the alloy. The mechanical property test shows that the performance of 8079 aluminum alloy is the best when the Si content is 1.3%.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2021
Author(s):  
Cheng Zhang ◽  
Cheng Peng ◽  
Jin Huang ◽  
Yanchun Zhao ◽  
Tingzhuang Han ◽  
...  

Building a gradient structure inside the Mg alloy structure can be expected to greatly improve its comprehensive mechanical properties. In this study, AZ31/Mg–Sc laminated composites with gradient grain structure were prepared by hot extrusion. The microstructure and mechanical properties of the Mg–1Sc alloy with different extrusion temperatures and surface AZ31 fine-grain layers were investigated. The alloy has a more obvious gradient microstructure when extruded at 350 °C. The nanoscale hardness value of Mg–1Sc alloy was improved through fine-grain strengthening and solution strengthening of the surface AZ31 fine-grain layer. The strength of Mg–1Sc alloy was improved due to the fine-grain strengthening and dislocation strengthening of the surface AZ31 fine-grain layer, and the elongation of Mg–1Sc alloy was increased by improving the distribution of the microstructure.


2007 ◽  
Vol 353-358 ◽  
pp. 1390-1393
Author(s):  
Bai Feng Luan ◽  
Gao Hui Wu ◽  
Qing Liu ◽  
Niels Hansen ◽  
Ting Quan Lei

An experimental study of microstructure and mechanical properties in the Al2O3 particulate reinforced 6061 Aluminum composites has been used to determine the effect of extrusion and particle volume fraction (20, 26, 30, 40, 50, 60%Vf) in deformed metal matrix composites. The microstructure of Al2O3 /6061Al composite before and after hot extrusion is investigated by TEM and SEM. Results show that dislocation and subgrain generated after hot extrusion as well as the particle distribution of composite become more uniform with extrusion ratio of 10:1. The ultimate strength, yield strength and elongation of the composite also increase after hot extrusion. Dispersion strengthening and subgrain boundary strengthening is discussed and also the effect of precipitate introduced by heat treatment both after casting and after extrusion. The yield stress (0.2% offset) of the composites has been calculated and predicted using a standard dislocation hardening model. Whilst the correlation between this and the measured value of yield stress obtained in previous experimental test is reasonable.


2005 ◽  
Vol 488-489 ◽  
pp. 103-106 ◽  
Author(s):  
Dan Qing Yi ◽  
Bin Wang ◽  
Xiya Fang ◽  
Su Juan Yao ◽  
Ling Ling Zhou ◽  
...  

The Mg-Zn-Zr alloy ZK60 with added trace rare-earth elements Y(0.9wt%) and Ce(0.9wt%) were prepared. After hot extrusion and aging treatment, the tensile mechanical properties of the alloys were tested at room temperature. Microstructures of the alloys were investigated by optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The existing form, affecting mechanisms of trace Y and Ce in alloys and the effects on the microstructures and mechanical properties of ZK60 alloy were discussed. The results showed that: trace rare-earth elements Y and Ce both had remarkable grain-refining effects on the alloys, while the grain-refining effect of Y was more significant than that of Ce. RE elements Y and Ce improved the mechanical properties of the ZK60 alloy, but the strengthening effect of Y was more remarkable. It was found that σb of Mg-Zn-Zr-Y alloy was improved by 12.6%. Addition of Ce to the ZK60 alloy led to an increase in ductility of the alloy from 15% to 17%.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Ning Li ◽  
Hong Yan ◽  
Qingjie Wu ◽  
Zeyu Cao

AbstractIt can be known from a large number of research results that improving the dispersibility of CNTs can effectively optimize the mechanical properties of the corresponding metal matrix composites. However, the crucial issue of increasing the bonding of CNTs and the matrix is still unsolved. In this paper, a novel method was developed to increase interfacial bonding strength by coating titanium oxide (TiO2) on the surface of CNTs. The rare earth Pr and TiO2@CNTs-reinforced AZ91matrix composites were successfully fabricated by powder metallurgy. Hot press sintering and hot extrusion of the milled powder was performed. After hot extrusion, the influence of TiO2@CNTs on the microstructure and mechanical properties of the composites were investigated. The results showed that the coating process can improve the distribution of CNTs in Mg alloy. The CNTs refined the grains of the matrix, and the CNTs were presented throughout the extrusion direction. When the TiO2@CNTs content was 1.0 wt.%, the yield strength (YS), ultimate tensile strength (UTS), and elongation of the alloy attained maximum values. The values were improved by 23.5%, 82.1%, and 40.0%, respectively, when compared with the AZ91 alloy. Good interfacial bonding was achieved, which resulted in an effective tensile loading transfer at the interface. CNTs carried the tensile stress and were observed on the tensile fracture.


Sign in / Sign up

Export Citation Format

Share Document