scholarly journals Dry Electrodes for Surface Electromyography Based on Architectured Titanium Thin Films

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2135 ◽  
Author(s):  
Marco S. Rodrigues ◽  
Patrique Fiedler ◽  
Nora Küchler ◽  
Rui P. Domingues ◽  
Cláudia Lopes ◽  
...  

Electrodes of silver/silver chloride (Ag/AgCl) are dominant in clinical settings for surface electromyography (sEMG) recordings. These electrodes need a conductive electrolyte gel to ensure proper performance, which dries during long-term measurements inhibiting the immediate electrode’s reuse and is often linked to skin irritation episodes. To overcome these drawbacks, a new type of dry electrodes based on architectured titanium (Ti) thin films were proposed in this work. The architectured microstructures were zigzags, obtained with different sputtering incidence angles (α), which have been shown to directly influence the films’ porosity and electrical conductivity. The electrodes were prepared using thermoplastic polyurethane (TPU) and stainless-steel (SS) substrates, and their performance was tested in male volunteers (athletes) by recording electromyography (EMG) signals, preceded by electrode-skin impedance measurements. In general, the results showed that both SS and TPU dry electrodes can be used for sEMG recordings. While SS electrodes almost match the signal quality parameters of reference electrodes of Ag/AgCl, the performance of electrodes based on TPU functionalized with a Ti thin film still requires further improvements. Noteworthy was the clear increase of the signal to noise ratios when the thin films’ microstructure evolved from normal growth towards zigzag microstructures, meaning that further tailoring of the thin film microstructure is a possible route to achieve optimized performances. Finally, the developed dry electrodes are reusable and allow for multiple EMG recordings without being replaced.

Author(s):  
Anandh Balakrishnan ◽  
Mrinal C. Saha

In this article, we have set up protocols for fabricating thermoplastic polyurethane thin films of about 30 μm (neat polyurethane and carbon nanofiber (CNF) containing polyurethane) via ultrasound assisted atomization at 20 kHz. From processing to thin film peel off, we have set up procedures for fabricating our samples. Using optical microscopy, we have examined the manufacturing of these films from a droplet diameter perspective. Our optical microscopy results indicate that the final film microstructure was directly dependent on the physical properties of the neat/CNF reinforced solution. Mechanical testing of these films was then carefully carried out using a dynamic mechanical analyzer (DMA) unit utilizing a specialized thin film test clamp fixture. These test results were compared with control cast films fabricated from the same solutions. For the similar extensions, we observed a drastic increase in the softness of the atomized film. We surmise that the ultrasound assisted droplet generation concurrent with secondary atomization and evaporation could have resulted in reduction of the molecular weight of the polyurethane in our atomized samples relative to the neat ones. Differential scanning calorimetry (DSC) scans have been conducted to confirm the changes in molecular weight. Although results were inconclusive there is evidence of exotherms at 49C in our atomized samples suggested of changes to molecular weight distribution.


2014 ◽  
Vol 1685 ◽  
Author(s):  
Amanda Myers ◽  
Yong Zhu

ABSTRACTWith increasing attention towards long-term health monitoring, there is a pressing need to create noninvasive sensors that monitor vital bioelectronic signals. Particular importance is placed on measuring electrocardiogram (ECG) signals as heart issues are widespread and can be prevented with the proper warning and care of potential problems. Currently, ECGs are taken in a hospital setting using disposable silver-silver chloride (Ag/AgCl) pre-gelled electrodes. Unfortunately, this cannot translate to a long-term monitoring setting due to the electrolytic gel of the electrodes drying and causing skin irritation. This paper presents a soft, skin-mountable dry electrode based on silver nanowires (AgNWs) for measuring ECG signals that can be used in long-term, wearable health monitoring due to the elimination of the electrolytic gel. The AgNWs are embedded in polydimethylsiloxane (PDMS), which creates a robust design that will not suffer from delamination or cracking problems that can eventually lead to loss of conductivity. The electrode is characterized by electrode-skin impedance as a function of frequency and by the surface resistance as the electrode is stretched. The performance of the dry electrode is evaluated and comparable to that of conventional Ag/AgCl electrodes. The ability of the dry electrode to conform to skin is believed to compensate for the lack of an electrolytic gel.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8143
Author(s):  
Cláudia Lopes ◽  
Patrique Fiedler ◽  
Marco Sampaio Rodrigues ◽  
Joel Borges ◽  
Maurizio Bertollo ◽  
...  

In a new era for digital health, dry electrodes for biopotential measurement enable the monitoring of essential vital functions outside of specialized healthcare centers. In this paper, a new type of nanostructured titanium-based thin film is proposed, revealing improved biopotential sensing performance and overcoming several of the limitations of conventional gel-based electrodes such as reusability, durability, biocompatibility, and comfort. The thin films were deposited on stainless steel (SS) discs and polyurethane (PU) substrates to be used as dry electrodes, for non-invasive monitoring of body surface biopotentials. Four different Ti–Me (Me = Al, Cu, Ag, or Au) metallic binary systems were prepared by magnetron sputtering. The morphology of the resulting Ti–Me systems was found to be dependent on the chemical composition of the films, specifically on the type and amount of Me. The existence of crystalline intermetallic phases or glassy amorphous structures also revealed a strong influence on the morphological features developed by the different systems. The electrodes were tested in an in-vivo study on 20 volunteers during sports activity, allowing study of the application-specific characteristics of the dry electrodes, based on Ti–Me intermetallic thin films, and evaluation of the impact of the electrode–skin impedance on biopotential sensing. The electrode–skin impedance results support the reusability and the high degree of reliability of the Ti–Me dry electrodes. The Ti–Al films revealed the least performance as biopotential electrodes, while the Ti–Au system provided excellent results very close to the Ag/AgCl reference electrodes.


2021 ◽  
Vol 15 ◽  
Author(s):  
Beatriz Vasconcelos ◽  
Patrique Fiedler ◽  
René Machts ◽  
Jens Haueisen ◽  
Carlos Fonseca

Electroencephalography (EEG) is increasingly used for repetitive and prolonged applications like neurofeedback, brain computer interfacing, and long-term intermittent monitoring. Dry-contact electrodes enable rapid self-application. A common drawback of existing dry electrodes is the limited wearing comfort during prolonged application. We propose a novel dry Arch electrode. Five semi-circular arches are arranged parallelly on a common baseplate. The electrode substrate material is a flexible thermoplastic polyurethane (TPU) produced by additive manufacturing. A chemical coating of Silver/Silver-Chloride (Ag/AgCl) is applied by electroless plating using a novel surface functionalization method. Arch electrodes were manufactured and validated in terms of mechanical durability, electrochemical stability, in vivo applicability, and signal characteristics. We compare the results of the dry arch electrodes with dry pin-shaped and conventional gel-based electrodes. 21-channel EEG recordings were acquired on 10 male and 5 female volunteers. The tests included resting state EEG, alpha activity, and a visual evoked potential. Wearing comfort was rated by the subjects directly after application, as well as at 30 min and 60 min of wearing. Our results show that the novel plating technique provides a well-adhering electrically conductive and electrochemically stable coating, withstanding repetitive strain and bending tests. The signal quality of the Arch electrodes is comparable to pin-shaped dry electrodes. The average channel reliability of the Arch electrode setup was 91.9 ± 9.5%. No considerable differences in signal characteristics have been observed for the gel-based, dry pin-shaped, and arch-shaped electrodes after the identification and exclusion of bad channels. The comfort was improved in comparison to pin-shaped electrodes and enabled applications of over 60 min duration. Arch electrodes required individual adaptation of the electrodes to the orientation and hairstyle of the volunteers. This initial preparation time of the 21-channel cap increased from an average of 5 min for pin-like electrodes to 15 min for Arch electrodes and 22 min for gel-based electrodes. However, when re-applying the arch electrode cap on the same volunteer, preparation times of pin-shaped and arch-shaped electrodes were comparable. In summary, our results indicate the applicability of the novel Arch electrode and coating for EEG acquisition. The novel electrode enables increased comfort for prolonged dry-contact measurement.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


Author(s):  
M. Grant Norton ◽  
C. Barry Carter

Pulsed-laser ablation has been widely used to produce high-quality thin films of YBa2Cu3O7-δ on a range of substrate materials. The nonequilibrium nature of the process allows congruent deposition of oxides with complex stoichiometrics. In the high power density regime produced by the UV excimer lasers the ablated species includes a mixture of neutral atoms, molecules and ions. All these species play an important role in thin-film deposition. However, changes in the deposition parameters have been shown to affect the microstructure of thin YBa2Cu3O7-δ films. The formation of metastable configurations is possible because at the low substrate temperatures used, only shortrange rearrangement on the substrate surface can occur. The parameters associated directly with the laser ablation process, those determining the nature of the process, e g. thermal or nonthermal volatilization, have been classified as ‘primary parameters'. Other parameters may also affect the microstructure of the thin film. In this paper, the effects of these ‘secondary parameters' on the microstructure of YBa2Cu3O7-δ films will be discussed. Examples of 'secondary parameters' include the substrate temperature and the oxygen partial pressure during deposition.


Author(s):  
P. Lu ◽  
W. Huang ◽  
C.S. Chern ◽  
Y.Q. Li ◽  
J. Zhao ◽  
...  

The YBa2Cu3O7-x thin films formed by metalorganic chemical vapor deposition(MOCVD) have been reported to have excellent superconducting properties including a sharp zero resistance transition temperature (Tc) of 89 K and a high critical current density of 2.3x106 A/cm2 or higher. The origin of the high critical current in the thin film compared to bulk materials is attributed to its structural properties such as orientation, grain boundaries and defects on the scale of the coherent length. In this report, we present microstructural aspects of the thin films deposited on the (100) LaAlO3 substrate, which process the highest critical current density.Details of the thin film growth process have been reported elsewhere. The thin films were examined in both planar and cross-section view by electron microscopy. TEM sample preparation was carried out using conventional grinding, dimpling and ion milling techniques. Special care was taken to avoid exposure of the thin films to water during the preparation processes.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Author(s):  
S. P. Sapers ◽  
R. Clark ◽  
P. Somerville

OCLI is a leading manufacturer of thin films for optical and thermal control applications. The determination of thin film and substrate topography can be a powerful way to obtain information for deposition process design and control, and about the final thin film device properties. At OCLI we use a scanning probe microscope (SPM) in the analytical lab to obtain qualitative and quantitative data about thin film and substrate surfaces for applications in production and research and development. This manufacturing environment requires a rapid response, and a large degree of flexibility, which poses special challenges for this emerging technology. The types of information the SPM provides can be broken into three categories:(1)Imaging of surface topography for visualization purposes, especially for samples that are not SEM compatible due to size or material constraints;(2)Examination of sample surface features to make physical measurements such as surface roughness, lateral feature spacing, grain size, and surface area;(3)Determination of physical properties such as surface compliance, i.e. “hardness”, surface frictional forces, surface electrical properties.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


Sign in / Sign up

Export Citation Format

Share Document