scholarly journals Tribological Behavior of AlCrSiN-Coated Tool Steel K340 Versus Popular Tool Steel Grades

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4895
Author(s):  
Kazimierz Drozd ◽  
Mariusz Walczak ◽  
Mirosław Szala ◽  
Kamil Gancarczyk

The tribological performance of metalwork steel tools is of vital importance in both cold and hot working processes. One solution for improving metal tool life is the application of coatings. This paper investigates the differences in quantitative wear behavior and wear mechanisms between AlCrSiN-coated and bare steel K340 and five reference tool steels: X155CrVMo12-1, X37CrMoV5-1, X40CrMoV5-1, 40CrMnMo7 and 90MnCrV8. The investigated tool steels were heat-treated, while K340 was subjected to thermochemical treatment and then coated with an AlCrSiN hard film (K340/AlCrSiN). The hardness, chemical composition, phase structure and microstructure of steels K340 and K340/AlCrSiN were examined. Tribological tests were conducted using the ball-on-disc tester in compliance with the ASTM G99 standard. The tests were performed under dry unidirectional sliding conditions, using an Al2O3 ball as a counterbody. The wear factor and coefficient of friction were estimated and analyzed with respect to hardness and alloying composition of the materials under study. Scanning electron microscopy (SEM) observations were made to identify the sliding wear mechanisms of the analyzed tool steels and physical vapor deposition (PVD)- coated K340 steel. In contrast to the harsh abrasive–adhesive wear mechanism observed for uncoated tool steels, the abrasive wear dominates in case of the AlCrSiN. The deposited thin film effectively prevents the K340 substrate from harsh wear severe degradation. Moreover, thanks to the deposited coating, the K340/AlCrSiN sample has a coefficient of friction (COF) of 0.529 and a wear factor of K = 5.68 × 10−7 m3 N−1 m−1, while the COF of the reference tool steels ranges from 0.70 to 0.89 and their wear factor ranges from 1.68 × 10−5 to 3.67 × 10−5 m3 N−1 m−1. The AlCrSiN deposition reduces the wear of the K340 steel and improves its sliding properties, which makes it a promising method for prolonging the service life of metalwork tools.

Author(s):  
Kazimierz Drozd ◽  
Mariusz Walczak ◽  
Mirosław Szala ◽  
Kamil Gancarczyk

The tribological performance of metalwork steel tools is of vital importance in both cold and hot working processes. One solution for improving metal tool life is the application of coatings. This paper investigates the effect of CrAlSiN thin-film PVD-deposition on the tribological behaviour of tool steel K340. The sliding wear performance of the coated K340 steel is analysed in relation to both the uncoated K340 steel and a range of tool steels dedicated to hot- and cold-working, such as X155CrVMo12-1, X37CrMoV5-1, X40CrMoV5-1, 40CrMnMo7 and 90MnCrV8. The investigated tool steels were heat-treated, while K340 was subjected to thermochemical treatment and then coated with a CrAlSiN hard film (K340/CrAlSiN). The hardness, chemical composition, phase structure and microstructure of steels K340 and K340/CrAlSiN are examined. Tribological tests were conducted using the ball-on-disc tester in compliance with the ASTM G99 standard. The tests were performed under dry unidirectional sliding conditions, using an Al2O3 ball as a counterbody. The wear factor and coefficient of friction are estimated and analysed with respect to hardness and alloying composition of the materials under study. SEM observations are made to identify the sliding wear mechanisms of the analysed tool steels and PVD-coated K340 steel. In contrast to the harsh abrasive-adhesive wear mechanism observed for uncoated tool steels, the abrasive wear dominates in case of the AlCrSiN. The deposited thin film effectively prevents the K304 substrate from harsh wear severe degradation. Moreover, thanks to the deposited coating, the K304/CrAlSiN sample has a COF of 0.529 and a wear factor of K=5.68×10−7 m3 N−1 m−1, while the COF of the reference tool steels ranges from 0.702 to 0.885 and their wear factor ranges from 1.68×10−5 m3 N−1 m−1 to 3.67×10−5 m3 N−1 m−1. The CrAlSiN deposition reduces the wear of the K340 steel and improves its sliding properties, which makes it a promising method for prolonging the service life of metalwork tools.


2008 ◽  
Vol 15 (04) ◽  
pp. 401-410 ◽  
Author(s):  
A. MUBARAK ◽  
PARVEZ AKHTER ◽  
ESAH HAMZAH ◽  
MOHD RADZI HJ. MOHD TOFF ◽  
ISHTIAQ A. QAZI

Titanium nitride ( TiN ) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The study concentrated on cathodic arc physical vapor deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MDs) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester, and pin-on-disc machine, were used to analyze and quantify the following properties and parameters: surface morphology, thickness, hardness, adhesion, and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MDs produced during the etching stage, protruded through the TiN film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 μm showed the most stable trend of COF versus sliding distance.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1038 ◽  
Author(s):  
Pello Jimbert ◽  
Maider Iturrondobeitia ◽  
Julen Ibarretxe ◽  
Roberto Fernandez-Martinez

The effects of deep cryogenic treatment (DCT) on the wear behavior of different tool steels have been widely reported in the scientific literature with uneven results. Some tool steels show a significant improvement in their wear resistance when they have been cryogenically treated while others exhibit no relevant amelioration or even a reduction in their wear resistance. In this study, the influence of DCT was investigated for a grade that has been barely studied in the scientific literature, the AISI A8 air-hardening medium-alloy cold work tool steel. Several aspects were analyzed in the present work: the wear resistance of the alloy, the internal residual stress, and finally the secondary carbide precipitation in terms of lengths and occupied area and its distribution into the microstructure. The results revealed a reduction in the wear rate of about 14% when the AISI A8 was cryogenically treated before tempering. The number of carbides that precipitated into the microstructure was 6% higher for the cryogenically treated samples, increasing from 0.68% to 0.73% of the total area they covered. Furthermore, the distribution of the carbides into the microstructure was more homogenous for the cryogenically treated samples.


2011 ◽  
Vol 672 ◽  
pp. 23-30 ◽  
Author(s):  
Herbert Danninger ◽  
Christian Sohar ◽  
Christian Gierl Mayer ◽  
Agnieszka Betzwar-Kotas ◽  
Brigitte Weiss

In this work, the gigacycle fatigue response of several tool steel grades has been studied using an ultrasonic resonance testing device. It showed that both with ingot metallurgy (IM) and powder metallurgy (PM) tool steels, a true fatigue limit does not exist up to 10E10 cycles. PM steels resulted in significantly higher endurance strength levels than IM grades. However, there was virtually no effect of the composition and hardness of the materials, both for PM and IM grades cold work tool steels and high speed steels exhibiting virtually the same S-N curves. In the IM tool steel grades, crack initiation started at large primary carbides or carbide clusters, while in the PM grades, nonmetallic inclusions were the critical sites. In any case it is very important to avoid introducing residual stresses into the specimen surfaces during preparation, which would markedly shift the endurance strength levels.


2009 ◽  
Vol 16 (01) ◽  
pp. 29-35 ◽  
Author(s):  
MUBARAK ALI ◽  
ESAH HAMZAH ◽  
NOUMAN ALI

Titanium nitride ( TiN ) widely used as hard coating material was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The goal of this study was to examine the effect of ion etching with and without titanium ( Ti ) and chromium ( Cr ) on the adhesion strength of TiN coatings deposited on tool steels. From the scratch tester, it was observed that by increasing Ti ion etching showed an increase in adhesion strength of the deposited coatings. The coatings deposited with Cr ion etching showed poor adhesion compared with the coatings deposited with Ti ion etching. Scratch test measurements showed that the coating deposited with titanium ion etching for 16 min is the most stable coating and maintained even at the critical load of 66 N. The curve obtained via penetration depth along the scratch trace is linear in the case of HSS, whereas is slightly flexible in the case of D2 tool steel. The coatings deposited on HSS exhibit better adhesion compared with those on D2 tool steel.


2013 ◽  
Vol 440 ◽  
pp. 88-91
Author(s):  
P.M. Madhankumar ◽  
S. Ilaiyavel

The knowledge of the properties of the coating in terms of wear resistance is of paramount importance in order to prevent the formation of severe damages. In this study, the wear performances of Zirconium oxide (ZrO2) coating over the surface of electro less nickel plating on aluminum and tool steel substrate is analyzed. The surface morphology of coatings was examined by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) .The wear tests were performed in a pin on disc apparatus as per ASTM G-99 Standard. The coefficient of friction and wear loss are evaluated. The results of the wear test established that coated pins exhibited the lowest average coefficient of friction and the lowest wear loss when compared with uncoated pins.


2015 ◽  
Vol 57 (4) ◽  
pp. 306-310 ◽  
Author(s):  
Lakhwinder Pal Singh ◽  
Jagtar Singh

Alloy Digest ◽  
2006 ◽  
Vol 55 (12) ◽  

Abstract TLS A6 is a medium-alloy air-hardening tool steel that is known for its through hardening at the low temperatures typically used with oil-hardening tool steels. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on wear resistance as well as heat treating and machining. Filing Code: TS-638. Producer or source: Timken Latrobe Steel.


Alloy Digest ◽  
1997 ◽  
Vol 46 (2) ◽  

Abstract Lukens cold-work tool steels A2, D2, O1, S5, and S7 are used in applications where an air-hardening, oil-hardening, or shock-resisting tool steel is required. These steels are available in full-size, annealed plates suitable for saw cutting and/or finishing. Parts can subsequently be machined and heat treated to a range of hardness requirements. For improved internal cleanliness, all Lukens cold-work tool steels are produced with maximum sulfur levels of 0.010%. This datasheet provides information on composition. It also includes information on machining and joining. Filing Code: TS-550. Producer or source: Lukens Steel Company.


Sign in / Sign up

Export Citation Format

Share Document