scholarly journals Piezoelectric Particulate Composite for Energy Harvesting from Mechanical Vibration

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4925
Author(s):  
Dariusz Grzybek ◽  
Dariusz Kata ◽  
Wojciech Sikora ◽  
Bogdan Sapiński ◽  
Piotr Micek ◽  
...  

Energy harvesting from mechanical vibration of buildings is usually realized by the use of devices, in which the main element is a prismatic beam with a rectangular cross-section. The beam has been the subject of scientific research; it is usually constructed with a carrying substrate that does not have piezoelectric characteristics and from piezoelectric material. In contrast, this investigation sought to create a beam structure with a piezoelectric composite only. The entire beam structure was made of a prototype piezoelectric particulate composite. Based on courses of voltage obtained in laboratory experiments and known geometry of the specimens, a series of finite element method (FEM) simulations was performed, aiming to estimate the piezoelectric coefficient d31 value at which the mentioned voltage could be achieved. In each specimen, sedimentation caused the formation of two distinct layers: top and bottom. The experiments revealed that the presented prototype piezoelectric particulate composite converts mechanical stress to electric energy in bending mode, which is used in energy harvesting from mechanical vibration. It is self-supporting and thus a carrying substrate is not required in the harvester structure.

Author(s):  
Lingshuai Meng ◽  
Lin Xu ◽  
Junyi Zou ◽  
Jia Mi ◽  
Sijing Guo

With the increasing of the train load, the wheel-rail wear is worsening, the maintaining and replacing cycle is shortened enormously, the problem of replacing steel rail and wheel prematurely not only make the railway transportation cost increasing, but also affect the railway normal transportation. This paper proposes a novel type of active energy self-supply radial steering technology — the parallel interconnection hydraulic-electric energy-harvesting active radial steering bogie system. This system is a typical “machine – electric – hydraulic” coupling system, which includes parallel interconnection hydraulic-electric energy-harvesting suspension and active radial steering bogie, consisting of mechanical, electronic, hydraulic and control subsystems internally. In this system, the radial steering bogie is equipped with four HESA, and HESA can reuse the mechanical vibration energy which used to be transformed into waste heat by the shock absorber. In this system, the mechanical vibration energy is now used to drive power module of active radial steering bogie, so as to implement the train’s active radial steering without external power supply. This paper discusses the evolution of radial steering bogie in general, and introduces the structure and basic principle of the parallel interconnection electro-hydraulic energy-harvesting active radial steering bogie system. The system establishes a model of the parallel interconnection hydraulic-electric energy-harvesting shock absorber. The typical vertical irregularity of American track is established. In the paper, we research on the system’s damping performance and energy recovery performance through stimulation. Simulation results show that the maximum vertical acceleration of train body is reduced from 42.9% to 62.3%, and the average energy recovery power from the system increases from 217W to 1835W when the system works at the six levels of track irregularities.


2019 ◽  
Vol 6 (1) ◽  
pp. 59
Author(s):  
Schun T. Uechi ◽  
Hiroshi Uechi

A mechanical vibration-induced, electric energy harvesting method is discussed with applications to vibration analyses of systems of vehicles, motorboats, trains, machines and bridges, etc.. The research has evolved from the analysis of International Roughness Index (IRI), which studies roughness of road-surface as longitudinal vibrational motions in a vehicle measured with a quarter-car simulation (QCS) or Global Positioning System (GPS) with sensors such as gyro sensor and magnetometer sensor. The electric energy-convertible vibrations with information of roughness of road surface are extracted by way of an mechanoelectric energy conversion, and an energy harvesting technology suitable for the system of vehicles is discussed. The mechanical vibration-induced electric current is also suitable for IRI information measurement as well as a measure for ride quality of vehicles.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Haisheng Li ◽  
Donghuan Liu ◽  
Jianjun Wang ◽  
Xinchun Shang

Abstract Previous studies have proved that the piezoelectric L-shaped beam-mass structure is a good candidate to harvest energy from ambient mechanical vibration. However, most researches merely focused on bending mode of the structure, which only can capture energy from in-plane base excitation. To fully exert the advantages of L-shaped harvesters, this paper will explore their energy harvesting performance on torsional mode with out-of-plane base excitation. The electromechanical coupling governing equation of the L-shaped harvester in torsional mode is derived by applying Gauss's law and the Euler–Bernoulli beam theory with linear assumption, and the analytical results are also validated with experimental results. In addition, the influences of key geometric parameters on the resonance frequency and output voltage of the harvester are also presented. This work demonstrates the feasibility of utilizing torsional mode of the L-shaped unimorph structure to harvest energy from out-of-plane mechanical vibration, which shows the potential of designing multi-directional and multi-frequency L-shaped harvesters.


2020 ◽  
Vol 978 ◽  
pp. 209-215
Author(s):  
Abhishek Kumar ◽  
Amritendu Roy

Research in renewable and clean energy has reached an unprecedented magnitude owing to the growing concerns over environmental hazards caused by the traditional fuels. In this regard, solar, wind and tidal energies are considered to meet large scale energy requirements. Small, stand-alone electronic devices which are growing in numbers in next generation smart cities, can be powered by scavenging energy from sources which would otherwise remain unused, such as mechanical vibrations. The source of mechanical vibration could have diverse origins, ranging from vibrations of machines to flow of wind, motion of automobiles, and human footfall etc. Energy harvesting from the above sources can be achieved through the principle of piezoelectricity. In the present work, piezoelectric ceramic (1-x) Pb (Mg1/3Nb2/3O3)-xPbTiO3 at x = 0.3 was prepared using conventional solid state method. Lead magnesium niobate and lead titanate (PMN-PT) solid solution within the morphotropic phase boundary composition considerably fulfils the essential piezoelectric characteristics for a high energy density harvester. However, PMN-PT is brittle and thus difficult to assemble directly into an energy harvesting system. Hence flexible piezoelectric composite of 20 wt % PMN-PT and polydimethylsiloxane (PDMS) was fabricated to evaluate its energy harvesting capability. Structural and microstructural characterization of the synthesized composite were performed using x-ray diffraction and optical microscopy. Electrical characterization was carried out using Keithley 6517B high resistance electrometer.


Author(s):  
Hieu Nguyen ◽  
Hamzeh Bardaweel

The work presented here investigates a unique design platform for multi-stable energy harvesting using only interaction between magnets. A solid cylindrical magnet is levitated between two stationary magnets. Peripheral magnets are positioned around the casing of the energy harvester to create multiple stable positions. Upon external vibration, kinetic energy is converted into electric energy that is extracted using a coil wrapped around the casing of the harvester. A prototype of the multi-stable energy harvester is fabricated. Monostable and bistable configurations are demonstrated and fully characterized in static and dynamic modes. Compared to traditional multi-stable designs the harvester introduced in this work is compact, occupies less volume, and does not require complex circuitry normally needed for multi-stable harvesters involving piezoelectric elements. At 2.5g [m/s2], results from experiment show that the bistable harvester does not outperform the monostable harvester. At this level of acceleration, the bistable harvester exhibits intrawell motion away from jump frequency. Chaotic motion is observed in the bistable harvester when excited close to jump frequency. Interwell motion that yields high displacement amplitudes and velocities is absent at this acceleration.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3474 ◽  
Author(s):  
Asif Khan ◽  
Faisal Raza Khan ◽  
Heung Soo Kim

Electro-active paper (EAPap) is a cellulose-based smart material that has shown promising results in a variety of smart applications (e.g., vibration sensor, piezo-speaker, bending actuator) with the merits of being flexible, lightweight, fracture tolerant, biodegradable, naturally abundant, cheap, biocompatible, and with the ability to form hybrid nanocomposites. This paper presents a review of the characterization and application of EAPap as a flexible mechanical vibration/strain sensor, bending actuator, and vibration energy harvester. The working mechanism of EAPap is explained along with the various parameters and factors that influence the sensing, actuation, and energy harvesting capabilities of EAPap. Although the piezoelectricity of EAPap is comparable to that of commercially available polyvinylidene fluoride (PVDF), EAPap has the preferable merits in terms of natural abundance and ample capacity of chemical modification. The article would provide guidelines for the characterization and application of EAPap in mechanical sensing, actuation, and vibration energy scavenging, along with the possible limitations and future research prospects.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7364
Author(s):  
Yi-Ren Wang ◽  
Ming-Ching Chu

This research proposes an energy harvesting system that collects the downward airflow from a helicopter or a multi-axis unmanned rotary-wing aircraft and uses this wind force to drive the magnet to rotate, generating repulsive force, which causes the double elastic steel system to slap each other and vibrate periodically in order to generate more electricity than the traditional energy harvesting system. The design concept of the vibration mechanism in this study is to allow the elastic steel carrying the magnet to slap another elastic steel carrying the piezoelectric patch to form a set of double elastic steel vibration energy harvesting (DES VEH) systems. The theoretical DES VEH mechanism of this research is composed of a pair of cantilever beams, with magnets attached to the free end of one beam, and PZT attached to the other beam. This study analyzes the single beam system first. The MOMS method is applied to analyze the frequency response of this nonlinear system theoretically, then combines the piezoelectric patch and the magneto-electric coupling device with this nonlinear elastic beam to analyze the benefits of the system’s converted electrical energy. In the theoretical study of the DES VEH system, the slapping force between the two elastic beams was considered as a concentrated load on each of the beams. Furthermore, both SES and DES VEH systems are studied and correlated. Finally, the experimental data and theoretical results are compared to verify the feasibility and correctness of the theory. It is proven that this DES VEH system can not only obtain the electric energy from the traditional SES VEH system but also obtain the extra electric energy of the steel vibration subjected to the slapping force, which generates optimal power to the greatest extent.


Author(s):  
Jacek Caban ◽  
Grzegorz Litak ◽  
Bartłomiej Ambrożkiewicz ◽  
Leszek Gardyński ◽  
Paweł Stączek ◽  
...  

The automotive industry faces huge challenge in environmental protection by reducing fossil fuels and energy consumption by developing various practical solutions in energy harvesting. The current analysis is related to the diesel engine power supply system in a passenger off-road vehicle for application of the piezoelectric energy harvesting system. Experimental tests were carried out for the three constant rotational speed values - 800, 1000 and 1500 rpm. The results pertained to operational and simulation tests of available power supply options from the engine suspension system in the vehicle, e.g. to power sensors supervising the engine’s operation or other small electrical devices in the vehicle. The simulations of output voltage were conducted by means of a nonlinear model with a resonator coupled to a piezoelectric elastic beam deformed in the magnetic field to improve the band of frequency transducing kinetic mechanic energy into electric energy.


2011 ◽  
Vol 13 (4) ◽  
pp. 159-166
Author(s):  
Jae-Jun Lee ◽  
Seung-Ki Ryu ◽  
Hak-Yong Moon ◽  
Soo-Ahn Kwon

Sign in / Sign up

Export Citation Format

Share Document