scholarly journals Evaluation of the Hydration Characteristics and Anti-Washout Resistance of Non-Dispersible Underwater Concrete with Nano-SiO2 and MgO

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1328
Author(s):  
In Kyu Jeon ◽  
Byeong Hun Woo ◽  
Dong Ho Yoo ◽  
Jae Suk Ryou ◽  
Hong Gi Kim

In this paper, the effect of nano-SiO2 (NS) and MgO on the hydration characteristics and anti-washout resistance of non-dispersible underwater concrete (UWC) was evaluated. A slump flow test, a viscosity test, and setting time measurement were conducted to identify the impacts of NS and MgO on the rheological properties of UWC. The pH and turbidity were measured to investigate the anti-washout performance of UWC mixes. To analyze the hydration characteristics and mechanical properties, hydration heat analysis, a compressive strength test, and thermogravimetric analyses were conducted. The experimental results showed that the fine particles of NS and MgO reduced slump flow, increased viscosity, and enhanced the anti-washout resistance of UWC. In addition, both NS and MgO shortened the initial and final setting times, and the replacement of MgO specimens slightly prolonged the setting time. NS accelerated the peak time and increased the peak temperature, and MgO delayed the hydration process and reduced the temperature due to the formation of brucite. The compressive results showed that NS improved the compressive strength of the UWC, and MgO slightly decreased the strength. The addition of NS also resulted in the formation of extra C–S–H, and the replacement of MgO caused the generation of a hydrotalcite phase.

2012 ◽  
Author(s):  
Soon Lee Ooi ◽  
Mohd Razman Salim ◽  
Mohammad Ismail ◽  
Md. Imtiaj Ali

In this paper, the feasibility of using treated effluent for concrete mixing was studied. Treated effluent from sewage treatment plants in Malaysia is currently being wasted through direct discharge into waterways. With proper water quality control, this treated effluent can also be considered as a potential water resource for specific applications. Two tests were carried out namely compressive strength test and setting time to determine the feasibility of using treated effluent for concrete mixing. The results were compared against the test conducted on control specimens which used potable water. The results showed that treated effluent increases the compressive strength and setting time when compared with potable water. Key words: treated effluent; mixing water; compressive strength; setting time; concrete technology.


2008 ◽  
Vol 396-398 ◽  
pp. 213-216 ◽  
Author(s):  
Daniela Jörn ◽  
Renate Gildenhaar ◽  
Georg Berger ◽  
Michael Stiller ◽  
Christine Knabe

The setting behaviour, the compressive strength and the porosity of four calcium alkali orthophosphate cements were examined under laboratory conditions (dry) and under conditions similar to those during clinical application (37°C, contact with body fluid). The results showed an increase of the setting times when specimens were covered with simulated body fluid. Especially, the final setting time (FHZ) was significantly higher for three of the four cements. Furthermore, when specimens were stored in SBF for 16h, an extensive decrease of the compressive strength was noted. The porosity was more than twice as high after 16h in SBF and this may be the cause for the great decrease of the compressive strength.


2021 ◽  
Vol 879 ◽  
pp. 62-67
Author(s):  
Khairunisa Muthusamy ◽  
Rahimah Embong ◽  
Nabilla Mohamad ◽  
Nur Syahira Hanim Kamarul Bahrin ◽  
Fadzil Mat Yahaya

Environmental degradation caused by deforestation activities for harvesting of limestone from the hills and its calcination process at cement factory along with disposal of cockle shell waste from fisheries industries is in need of resolution. In view of sustainable green environment, approach of utilizing cockle shell waste as partial cement replacement in cement production would reduce pollution caused by both industries. Thus, this research investigates the effect of cockle shell powder as partial cement replacement on setting time and compressive strength of mortar. A total of five types of mortar mixes consisting different percentage of cockle shell powder as partial cement replacement from 0%, 10%, 20%, 30%, and 40% by weight of cement were prepared. Setting time test were conducted on fresh paste. All specimens were subjected to water curing until the testing age. Compressive strength test were conducted on hardened mortar cubes at 3, 7 and 28 days. Finding shows that integration of cockle shell powder as partial cement replacement influences the setting time and compressive strength of mortar. Suitable combination of 10% cockle shell powder successfully enhances the compressive strength of mortar. Conclusively, success in transforming the cockle shell waste to be used as partial cement replacement in mortar production able to reduce cement consumption, save landfill usage for trash dumping and promote cleaner environment for healthier lifestyle of community nearby.


2018 ◽  
Vol 4 (4) ◽  
pp. 776 ◽  
Author(s):  
Mushtaq Ahmad ◽  
Sana Ullah ◽  
Aneel Manan ◽  
Temple Chimuanya Odimegeu ◽  
Salmia Beddu

The study has conducted to determine the workability and compressive strength of the self –compacting concrete. The sand has replaced with quarry dust with the proportion of 10, 20, 30 and 40% and super plasticizer was added 0.9%. The experiments were carried out at the Infrastructure University Kuala Lumpur (IUKL) concrete laboratory. Slump flow, J- Ring tests were carried out to determine the workability of self-compacting concrete and compressive strength test was conducted on 7 days and 28th days of curing period. A finding of the study shows that workability and compressive strength has increased by addition of quarry dust. It is concluded that addition of quarry dust up to 30%  improve the workability of the self-compacting concrete and further addition of quarry dust decrease the workability. Additionally, compressive strength of the quarry dust modified self-compacting concrete shows the trend of higher compressive strength up to 30% addition of quarry dust with sand replacement and further addition decrease the compressive strength.


2021 ◽  
Vol 72 (1) ◽  
pp. 76-83
Author(s):  
Lam Le Hong ◽  
Lam Dao Duy ◽  
Huu Pham Duy

The demand for High Performance Concrete (HPC) is steadily increasing with massive developments. Conventionally, it is possible to use industrial products such as silica fume (SF), fly ash, as supplementary cementitious materials (SCM), to enhance the attributes of HPC. In recent years, nano-silica (NS) is used as an additive in added mainly to fill up the deviation arises with the addition of SF for HPC. This study aims to optimize the proportion of NS (produced in Vietnam) in the mixture used for fabricating 70 MPa high-performance concrete. SiO2 powder with particle size from 10 to 15 nm were used for mixing. A series of compressive strength test of HPC with nano-SiO2 varied from 0 to 2.8 percent of total of all binders (0%, 1.2%, 2%, 2.8%), and the fixed percentage of silica fume at 8% were proposed. Results show compressive strength increases with the increase of nano-SiO2, but this increase stops after reaching 2%. And at day 28 of the curing period, only concrete mixture containing of 8% silica fume and 2% nano-SiO2, had the highest compressive strength.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3541 ◽  
Author(s):  
Kai Wu ◽  
Hao Han ◽  
Linglin Xu ◽  
Xiaojie Yang ◽  
Geert De Schutter

In order to modify the porous interfacial transition zone (ITZ) microstructure of concrete more efficiently, a method of coating aggregate surfaces by using several nanoparticles was evaluated in this study. The compressive strength, chloride penetration of sound, and pre-loading samples were assessed in relation to the type of coating materials used (slag, nano-CaCO3, and nano-SiO2) and the designed coating thickness (5, 10, and 15 μm). The ITZ microstructure was quantitatively determined via Backscattered electron (BSE) image analysis. Results showed that the overall performance of concrete is highly dependent on the coating materials and the designed coating thickness. Increasing the coating thickness of slag and nano-SiO2 could improve the chloride penetration resistance but decrease the compressive strength. Using nano-CaCO3 to coat the aggregate leads to a significant reduction in the properties of the so-prepared concrete. Though coating inert fine particles around aggregate could disturb the initial particle packing and modify the ITZ, it is not able to improve the overall concrete properties. Coating aggregate could determine the ITZ microstructure, especially within the region that is around 30 μm away from aggregate surface.


2017 ◽  
Vol 898 ◽  
pp. 1990-1995 ◽  
Author(s):  
Ming Zhang Lan ◽  
Bin Feng Xiang ◽  
Jian Feng Wang ◽  
Xu Dong Zhao ◽  
Xiao Ying Wang

In order to investigate the early hydration behavior of rapid setting and hardening belite sulfoaluminate cements, the methods of X-ray Diffraction, Scanning Electron Microscope, Compressive Strength test and Setting Times test were used to identify and quantify the hydration kinetics and microstructure of this new-found cements in China. The results showed that the main mineral compositions of high belite sulfoaluminate cement clinker included calcium sulfoaluminate (4CaO·3Al2O3·CaSO4), belite (2CaO·SiO2), ferrite phase, free gypsum and free lime. It was found that not only the setting time and compressive strength but also the composition of hydration products were influenced by anhydrite to some extent. Meanwhile, a mass of AFt and AFm generated along with the hydration process at different ages, overlapped, crossed and penetrated through calcium silicate hydrate gel and aluminum oxide to form a relatively dense structure which could contribute to the high strength of cement.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
El-Sayed Negim ◽  
Latipa Kozhamzharova ◽  
Yeligbayeva Gulzhakhan ◽  
Jamal Khatib ◽  
Lyazzat Bekbayeva ◽  
...  

This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.


2011 ◽  
Vol 332-334 ◽  
pp. 1655-1658
Author(s):  
Biao Wang ◽  
Rui Juan Xie ◽  
Yang Yang Huang

In this paper, calcium phosphate cement (CPC) was prepared with tetracalcium phosphate (TTCP)/dicalcium phosphate anhydrous (DCPA) system as solid phase and phosphate buffered solution (PBS) as liquid phase, then silk fibroin (SF) was added into CPC to form silk fibroin/calcium phosphate composite. To study the effect of SF on the properties of composite, different mass fraction of SF was added into the composite. The surface morphology was observed by Scanning Electron Microscope. The setting time was investigated by ISO Cement Standard Consistency Instrument. The structure of the composite was studied by X-ray diffraction and infrared spectroscopy. Mechanical properties of samples were tested by Instron Universal Testing Machine. The results showed that the particles of SF could be seen obviously in the surface of all composite, and acicular crystal of hydroxyapatite (HA) was formed in the hardening body of both the composite and the pure CPC. The acicular crystal of HA derived from composite with SF appeared to be thinner. The setting times of the composites were all between 9 to 15min. Compared to pure CPC, the compressive strength and work-of-compressive of composites were all improved. The compressive strength of the composite with 1% SF increased obviously.


Sign in / Sign up

Export Citation Format

Share Document