scholarly journals Modification of Carbon Black with Hydrogen Peroxide for High Performance Anode Catalyst of Direct Methanol Fuel Cells

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3902
Author(s):  
Yu-Wen Chen ◽  
Han-Gen Chen ◽  
Man-Yin Lo ◽  
Yan-Chih Chen

In this study, high-surface-area carbon black is used to support PtRu. In order to increase the functional groups on the surface of carbon black and to have a more homogenous dispersed PtRu metal, the surface of carbon black is functionalized by H2O2. PtRu/carbon black is synthesized by the deposition–precipitation method. NaH2PO2 is used as the reducing agent in preparation. These catalysts are characterized by N2 sorption, temperature-programmed desorption, X-ray diffraction, transmission electron microscope, and X-ray photoelectron spectroscopy. The methanol oxidation ability of the catalyst is tested by cyclic voltammetry measurement. Using H2O2 to modify carbon black can increase the amount of functional groups on the surface, thereby increasing the metal dispersion and decreasing metal particle size. NaH2PO2 as a reducing agent can suppress the growth of metal particles. The best modified carbon black catalyst is the one modified with 30% H2O2. The methanol oxidation activity of the catalyst is mainly related to the particle size of PtRu metal, instead of the surface area and conductivity of carbon black. The PtRu catalyst supported by this modified carbon black has very high activity, with an activity reaching 309.5 A/g.

Author(s):  
Raghuram Chetty ◽  
Keith Scott ◽  
Shankhamala Kundu ◽  
Martin Muhler

Platinum based binary and ternary catalysts were prepared by thermal decomposition onto a titanium mesh and were evaluated for the anodic oxidation of methanol. The binary Pt:Ru catalyst with a composition of 1:1 gave the highest performance for methanol oxidation at 80°C. The effect of temperature and time for thermal decomposition was optimized with respect to methanol oxidation, and the catalysts were characterized by cyclic voltammetry, linear sweep voltammetry, scanning electron microscopy, X-ray diffraction studies, and X-ray photoelectron spectroscopy. The best catalyst was evaluated in a single fuel cell, and the effect of methanol concentration, temperature, and oxygen/air flow was studied. The mesh-based fuel cell, operating at 80°C with 1 mol dm3 methanol, gave maximum power densities of 38 mW cm−2 and 22 mW cm−2 with 1 bar (gauge) oxygen and air, respectively.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Antonio Jesús Fernández-Ropero ◽  
Bartosz Zawadzki ◽  
Krzysztof Matus ◽  
Wojciech Patkowski ◽  
Mirosław Krawczyk ◽  
...  

This work presents the effect of Co loading on the performance of CNR115 carbon-supported catalysts in the continuous-flow chemoselective hydrogenation of 2-methyl-2-pentenal for the obtention of 2-methylpentanal, an intermediate in the synthesis of the sedative drug meprobamate. The Co loading catalysts (2, 6, 10, and 14 wt.%) were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), temperature-programmed desorption of hydrogen (H2-TPD) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy for selected samples, and have been studied as hydrogenation catalysts at different pressure and temperature ranges. The results reveal that a certain amount of Co is necessary to achieve significant conversion values. However, excessive loading affects the morphological parameters, such as the surface area available for hydrogen adsorption and the particle size, preventing an increase in conversion, despite the increased presence of Co. Moreover, the larger particle size, caused by increasing the loading, alters the chemoselectivity, favouring the formation of 2-methyl-2-pentenol and, thus, decreasing the selectivity towards the desired product. The 6 wt.% Co-loaded material demonstrates the best catalytic performance, which is related to the formation of NPs with optimum size. Almost 100% selectivity towards 2-methylpentanal was obtained for the catalysts with lower Co loading (2 and 6 wt.%).


Author(s):  
Jun Zhang ◽  
Jiao Chen ◽  
Fan Zhou ◽  
Xuewen Zeng ◽  
An Xing ◽  
...  

Abstract Monodispersed Pt nanoparticles supported on a TiO2 and nitrogen-doped carbon composite (TiO2/NDC) were successfully synthesized via an efficient in situ self-assembly strategy and microwave-assisted polyol process. The Pt/TiO2/NDC catalyst exhibited superior electrocatalytic activity toward the methanol oxidation reaction (MOR). The electrochemically active surface area of the Pt/TiO2/NDC catalyst was twofold higher than that of the Pt/C/NDC catalyst. In addition, the Pt/TiO2/NDC catalyst revealed a better electrocatalytic activity and CO-tolerance as well as a stability toward the MOR. The combined characterization from Fourier transform infrared spectrum, Brunauer-Emmett-Teller surface area, scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometer, thermogravimetric analysis, inductively coupled plasma atomic emissions spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy analyses demonstrated that the superior catalytic performance and stability of the Pt/TiO2/NDC catalysts likely arose from the synergistic effect of their unique morphology and composition as well as the electronic effect between the TiO2/NDC and Pt. This electrocatalyst holds great promise for application in direct methanol fuel cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
S. Basri ◽  
S. K. Kamarudin ◽  
W. R. W. Daud ◽  
Z. Yaakob ◽  
A. A. H. Kadhum

PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1catalyst.


2018 ◽  
Vol 196 ◽  
pp. 04005
Author(s):  
Irina Stepina ◽  
Irina Kotlyarova

The difficulty of wood protection from biocorrosion and fire is due to the fact that modifiers in use are washed out from the surface of the substrate under the influence of environmental factors. This results in a rapid loss of the protective effect and other practically important wood characteristics caused by the modification. To solve this problem is the aim of our work. Here, monoethanolaminoborate is used as a modifier, where electron-donating nitrogen atom provides a coordination number equal to four to a boron atom, which determines the hydrolytic stability of the compounds formed. Alpha-cellulose ground mechanically to a particle size of 1 mm at most was used as a model compound for the modification. X-ray photoelectron spectra were recorded on the XSAM-800 spectrometer (Kratos, UK). Prolonged extraction of the modified samples preceded the registration of the photoelectron spectra to exclude the fixation of the modifier molecules unreacted with cellulose. As a result of the experiment, boron and nitrogen atoms were found in the modified substrate, which indicated the hydrolytic stability of the bonds formed between the modifier molecules and the substrate. Therefore monoethanolaminoborate can be considered as a non-extractable modifier for wood-cellulose materials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 366
Author(s):  
Margarita Gabrovska ◽  
Ivan Ivanov ◽  
Dimitrinka Nikolova ◽  
Jugoslav Krstić ◽  
Anna Maria Venezia ◽  
...  

Supported gold on co-precipitated nanosized NiAl layered double hydroxides (LDHs) was studied as an effective catalyst for medium-temperature water–gas shift (WGS) reaction, an industrial catalytic process traditionally applied for the reduction in the amount of CO in the synthesis gas and production of pure hydrogen. The motivation of the present study was to improve the performance of the Au/NiAl catalyst via modification by CeO2. An innovative approach for the direct deposition of ceria (1, 3 or 5 wt.%) on NiAl-LDH, based on the precipitation of Ce3+ ions with 1M NaOH, was developed. The proposed method allows us to obtain the CeO2 phase and to preserve the NiAl layered structure by avoiding the calcination treatment. The synthesis of Au-containing samples was performed through the deposition–precipitation method. The as-prepared and WGS-tested samples were characterized by X-ray powder diffraction, N2-physisorption and X-ray photoelectron spectroscopy in order to clarify the effects of Au and CeO2 loading on the structure, phase composition, textural and electronic properties and activity of the catalysts. The reduction behavior of the studied samples was evaluated by temperature-programmed reduction. The WGS performance of Au/NiAl catalysts was significantly affected by the addition of CeO2. A favorable role of ceria was revealed by comparison of CO conversion degree at 220 °C reached by 3 wt.% CeO2-modified and ceria-free Au/NiAl samples (98.8 and 83.4%, respectively). It can be stated that tuning the properties of Au/NiAl LDH via CeO2 addition offers catalysts with possibilities for practical application owing to innovative synthesis and improved WGS performance.


2002 ◽  
Vol 57 (2) ◽  
pp. 193-201 ◽  
Author(s):  
Gülsün Gökağaç ◽  
Brendan J. Kennedy

11% Pt/C, 10% Pt + 1%Os/C, 9% Pt + 2%Os/C, 8% Pt + 3%Os/C, 7% Pt + 4%Os/C, 6% Pt + 5%Os/C and 5%Pt + 6% Os/C catalysts have been prepared for methanol oxidation reaction. Transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and cyclic voltammetry have been used to understand the nature of the species present in these catalysts. 7% Pt + 4% Os/C was the most active catalyst, while 8% Pt + 3% Os/C was the least active one. It is found that the metal particle size and distribution on the carbon support, the surface composition and the oxidation states of the metal particles, the metal-metal and metal support interactions are important parameters to define the activity of the catalyst.


2016 ◽  
Vol 6 (6) ◽  
pp. 20160056 ◽  
Author(s):  
R. Pruna ◽  
F. Palacio ◽  
M. Martínez ◽  
O. Blázquez ◽  
S. Hernández ◽  
...  

Fabrication and organosilane-functionalization and characterization of nanostructured ITO electrodes are reported. Nanostructured ITO electrodes were obtained by electron beam evaporation, and a subsequent annealing treatment was selectively performed to modify their crystalline state. An increase in geometrical surface area in comparison with thin-film electrodes area was observed by atomic force microscopy, implying higher electroactive surface area for nanostructured ITO electrodes and thus higher detection levels. To investigate the increase in detectability, chemical organosilane-functionalization of nanostructured ITO electrodes was performed. The formation of 3-glycidoxypropyltrimethoxysilane (GOPTS) layers was detected by X-ray photoelectron spectroscopy. As an indirect method to confirm the presence of organosilane molecules on the ITO substrates, cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were also carried out. Cyclic voltammograms of functionalized ITO electrodes presented lower reduction-oxidation peak currents compared with non-functionalized ITO electrodes. These results demonstrate the presence of the epoxysilane coating on the ITO surface. EIS showed that organosilane-functionalized electrodes present higher polarization resistance, acting as an electronic barrier for the electron transfer between the conductive solution and the ITO electrode. The results of these electrochemical measurements, together with the significant difference in the X-ray spectra between bare ITO and organosilane-functionalized ITO substrates, may point to a new exploitable oxide-based nanostructured material for biosensing applications. As a first step towards sensing, rapid functionalization of such substrates and their application to electrochemical analysis is tested in this work. Interestingly, oxide-based materials are highly integrable with the silicon chip technology, which would permit the easy adaptation of such sensors into lab-on-a-chip configurations, providing benefits such as reduced size and weight to facilitate on-chip integration, and leading to low-cost mass production of microanalysis systems.


2020 ◽  
Vol 9 (3) ◽  
pp. 9-14
Author(s):  
Hao Pham Van ◽  
Linh Ha Xuan ◽  
Oanh Phung Thi ◽  
Hong Phan Ngoc ◽  
Huy Nguyen Nhat ◽  
...  

This report presents the effect of synthesis conditions on the synthesis of graphene nanosheets via electrochemical exfoliation method for adsorbing methylene blue from aqueous solution. Oxygen-containing functional groups and defects in the material were characterized by Raman and X-ray photoelectron spectroscopy (XPS). As a result, by using voltage of 15 V, (NH4)2SO4 (5%, 250 mL) and KOH (7.5%, 250 mL), the obtained material showed the highest MB adsorption capacity due to the high densities of oxygen-containing groups and defects comparison to other conditions.


Sign in / Sign up

Export Citation Format

Share Document