scholarly journals A Review on Thermophotovoltaic Cell and Its Applications in Energy Conversion: Issues and Recommendations

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4944
Author(s):  
Mansur Mohammed Ali Gamel ◽  
Hui Jing Lee ◽  
Wan Emilin Suliza Wan Abdul Rashid ◽  
Pin Jern Ker ◽  
Lau Kuen Yau ◽  
...  

Generally, waste heat is redundantly released into the surrounding by anthropogenic activities without strategized planning. Consequently, urban heat islands and global warming chronically increases over time. Thermophotovoltaic (TPV) systems can be potentially deployed to harvest waste heat and recuperate energy to tackle this global issue with supplementary generation of electrical energy. This paper presents a critical review on two dominant types of semiconductor materials, namely gallium antimonide (GaSb) and indium gallium arsenide (InGaAs), as the potential candidates for TPV cells. The advantages and drawbacks of non-epitaxy and epitaxy growth methods are well-discussed based on different semiconductor materials. In addition, this paper critically examines and summarizes the electrical cell performance of TPV cells made of GaSb, InGaAs and other narrow bandgap semiconductor materials. The cell conversion efficiency improvement in terms of structural design and architectural optimization are also comprehensively analyzed and discussed. Lastly, the practical applications, current issues and challenges of TPV cells are critically reviewed and concluded with recommendations for future research. The highlighted insights of this review will contribute to the increase in effort towards development of future TPV systems with improved cell conversion efficiency.

2014 ◽  
Vol 16 (37) ◽  
pp. 20120-20126 ◽  
Author(s):  
Yaniv Gelbstein ◽  
Joseph Davidow

Methods for enhancement of the direct thermal to electrical energy conversion efficiency, upon development of advanced thermoelectric materials, are constantly investigated mainly for an efficient implementation of thermoelectric devices in automotive vehicles, for utilizing the waste heat generated in such engines into useful electrical power and thereby reduction of the fuel consumption and CO2 emission levels.


2014 ◽  
Vol 659 ◽  
pp. 421-424 ◽  
Author(s):  
Aristotel Popescu ◽  
Ema Carmen Panaite ◽  
Ana Georgiana Lupu ◽  
Marius Atanasiu ◽  
Christos Vlachokostas ◽  
...  

This paper proposes two configurations for a hybrid solar energy conversion device that can be used as a self-sustained, independent power generation system in isolated locations in hot climate areas. Given the strong dependence of photovoltaic cell conversion efficiency on operation temperature, the cooling of the backside becomes imperative, increasing not only electrical, but also the overall solar energy conversion efficiency. The hybrid system provides now electricity and hot hater for domestic applications. To further improve electrical efficiency, a thermoelectric generator module is added to the system, harvesting the thermal energy that otherwise would be regarded as waste heat and rejected to environment. The optimization of the parameters that influence the total efficiency demonstrate the strong connection between the three parts of the system, PV-TE-DHW.


Due to energy crisis as well as environmental pollution issues, it is necessity for the establishment of alternatives energy harvester system in reducing the dependency of the primary resources such as oil and coal. The purpose of this research is to investigate working principle of the thermoelectric (TE) which able to harvest waste heat energy through a portable air conditioner and convert it to electrical energy. To optimise the TE performance, a number of TE configurations via experimental analysis are carried out which are significantly affecting the output power and the conversion efficiency of the TE system. From this research, it is concluded that proper design of the TE system is required to improve its energy conversion efficiency.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1223
Author(s):  
Mojde Sedaghat ◽  
Yahya Emam ◽  
Ali Mokhtassi-Bidgoli ◽  
Saeid Hazrati ◽  
Claudio Lovisolo ◽  
...  

Strigolactones (SLs) have been implicated in many plant biological and physiological processes, including the responses to abiotic stresses such as drought, in concert with other phytohormones. While it is now clear that exogenous SLs may help plants to survive in harsh environmental condition, the best, most effective protocols for treatment have not been defined yet, and the mechanisms of action are far from being fully understood. In the set of experiments reported here, we contrasted two application methods for treatment with a synthetic analog of SL, GR24. A number of morphometric, physiological and biochemical parameters were measured following foliar application of GR24 or application in the residual irrigation water in winter wheat plants under irrigated and drought stress conditions. Depending on the concentration and the method of GR24 application, differentiated photosynthesis and transpiration rate, stomatal conductance, leaf water potential, antioxidant enzyme activities and yield in drought conditions were observed. We present evidence that different methods of GR24 application led to increased photosynthesis and yield under stress by a combination of drought tolerance and escape factors, which should be considered for future research exploring the potential of this new family of bioactive molecules for practical applications.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 142
Author(s):  
Jianfei Tang ◽  
Tianle Liu ◽  
Sijia Miao ◽  
Yuljae Cho

In recent years, we have experienced extreme climate changes due to the global warming, continuously impacting and changing our daily lives. To build a sustainable environment and society, various energy technologies have been developed and introduced. Among them, energy harvesting, converting ambient environmental energy into electrical energy, has emerged as one of the promising technologies for a variety of energy applications. In particular, a photo (electro) catalytic water splitting system, coupled with emerging energy harvesting technology, has demonstrated high device performance, demonstrating its great social impact for the development of the new water splitting system. In this review article, we introduce and discuss in detail the emerging energy-harvesting technology for photo (electro) catalytic water splitting applications. The article includes fundamentals of photocatalytic and electrocatalytic water splitting and water splitting applications coupled with the emerging energy-harvesting technologies using piezoelectric, piezo-phototronic, pyroelectric, triboelectric, and photovoltaic effects. We comprehensively deal with different mechanisms in water splitting processes with respect to the energy harvesting processes and their effect on the water splitting systems. Lastly, new opportunities in energy harvesting-assisted water splitting are introduced together with future research directions that need to be investigated for further development of new types of water splitting systems.


2021 ◽  
Vol 13 (14) ◽  
pp. 2838
Author(s):  
Yaping Mo ◽  
Yongming Xu ◽  
Huijuan Chen ◽  
Shanyou Zhu

Land surface temperature (LST) is an important environmental parameter in climate change, urban heat islands, drought, public health, and other fields. Thermal infrared (TIR) remote sensing is the main method used to obtain LST information over large spatial scales. However, cloud cover results in many data gaps in remotely sensed LST datasets, greatly limiting their practical applications. Many studies have sought to fill these data gaps and reconstruct cloud-free LST datasets over the last few decades. This paper reviews the progress of LST reconstruction research. A bibliometric analysis is conducted to provide a brief overview of the papers published in this field. The existing reconstruction algorithms can be grouped into five categories: spatial gap-filling methods, temporal gap-filling methods, spatiotemporal gap-filling methods, multi-source fusion-based gap-filling methods, and surface energy balance-based gap-filling methods. The principles, advantages, and limitations of these methods are described and discussed. The applications of these methods are also outlined. In addition, the validation of filled LST values’ cloudy pixels is an important concern in LST reconstruction. The different validation methods applied for reconstructed LST datasets are also reviewed herein. Finally, prospects for future developments in LST reconstruction are provided.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Seong-heum Kim ◽  
Youngbae Hwang

Owing to recent advancements in deep learning methods and relevant databases, it is becoming increasingly easier to recognize 3D objects using only RGB images from single viewpoints. This study investigates the major breakthroughs and current progress in deep learning-based monocular 3D object detection. For relatively low-cost data acquisition systems without depth sensors or cameras at multiple viewpoints, we first consider existing databases with 2D RGB photos and their relevant attributes. Based on this simple sensor modality for practical applications, deep learning-based monocular 3D object detection methods that overcome significant research challenges are categorized and summarized. We present the key concepts and detailed descriptions of representative single-stage and multiple-stage detection solutions. In addition, we discuss the effectiveness of the detection models on their baseline benchmarks. Finally, we explore several directions for future research on monocular 3D object detection.


Author(s):  
Gautam Sharma ◽  
Vineet Kumar Pandey ◽  
Shouvik Datta ◽  
Prasenjit Ghosh

Thermoelectric materials are used for conversion of waste heat to electrical energy. The transport coefficients that determine their thermoelectric properties depend on the band structure and the relaxation time of...


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4561 ◽  
Author(s):  
Nguyen T. Hung ◽  
Ahmad R. T. Nugraha ◽  
Riichiro Saito

Thermoelectric (TE) material is a class of materials that can convert heat to electrical energy directly in a solid-state-device without any moving parts and that is environmentally friendly. The study and development of TE materials have grown quickly in the past decade. However, their development goes slowly by the lack of cheap TE materials with high Seebeck coefficient and good electrical conductivity. Carbon nanotubes (CNTs) are particularly attractive as TE materials because of at least three reasons: (1) CNTs possess various band gaps depending on their structure, (2) CNTs represent unique one-dimensional carbon materials which naturally satisfies the conditions of quantum confinement effect to enhance the TE efficiency and (3) CNTs provide us with a platform for developing lightweight and flexible TE devices due to their mechanical properties. The TE power factor is reported to reach 700–1000 W / m K 2 for both p-type and n-type CNTs when purified to contain only doped semiconducting CNT species. Therefore, CNTs are promising for a variety of TE applications in which the heat source is unlimited, such as waste heat or solar heat although their figure of merit Z T is still modest (0.05 at 300 K). In this paper, we review in detail from the basic concept of TE field to the fundamental TE properties of CNTs, as well as their applications. Furthermore, the strategies are discussed to improve the TE properties of CNTs. Finally, we give our perspectives on the tremendous potential of CNTs-based TE materials and composites.


2021 ◽  
Vol 13 (8) ◽  
pp. 4206
Author(s):  
Jamilya Nurgazina ◽  
Udsanee Pakdeetrakulwong ◽  
Thomas Moser ◽  
Gerald Reiner

The lack of transparency and traceability in food supply chains (FSCs) is raising concerns among consumers and stakeholders about food information credibility, food quality, and safety. Insufficient records, a lack of digitalization and standardization of processes, and information exchange are some of the most critical challenges, which can be tackled with disruptive technologies, such as the Internet of Things (IoT), blockchain, and distributed ledger technologies (DLTs). Studies provide evidence that novel technological and sustainable practices in FSCs are necessary. This paper aims to describe current practical applications of DLTs and IoT in FSCs, investigating the challenges of implementation, and potentials for future research directions, thus contributing to achievement of the United Nations’ Sustainable Development Goals (SDGs). Within a systematic literature review, the content of 69 academic publications was analyzed, describing aspects of implementation and measures to address the challenges of scalability, security, and privacy of DLT, and IoT solutions. The challenges of high costs, standardization, regulation, interoperability, and energy consumption of DLT solutions were also classified as highly relevant, but were not widely addressed in literature. The application of DLTs in FSCs can potentially contribute to 6 strategic SDGs, providing synergies and possibilities for more sustainable, traceable, and transparent FSCs.


Sign in / Sign up

Export Citation Format

Share Document