scholarly journals Correlations of Geometry and Infill Degree of Extrusion Additively Manufactured 316L Stainless Steel Components

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5173
Author(s):  
Tobias Rosnitschek ◽  
Andressa Seefeldt ◽  
Bettina Alber-Laukant ◽  
Thomas Neumeyer ◽  
Volker Altstädt ◽  
...  

This study focuses on the effect of part geometry and infill degrees on effective mechanical properties of extrusion additively manufactured stainless steel 316L parts produced with BASF’s Ultrafuse 316LX filament. Knowledge about correlations between infill degrees, mechanical properties and dimensional deviations are essential to enhance the part performance and further establish efficient methods for the product development for lightweight metal engineering applications. To investigate the effective Young’s modulus, yield strength and bending stress, standard testing methods for tensile testing and bending testing were used. For evaluating the dimensional accuracy, the tensile and bending specimens were measured before and after sintering to analyze anisotropic shrinkage effects and dimensional deviations linked to the infill structure. The results showed that dimensions larger than 10 mm have minor geometrical deviations and that the effective Young’s modulus varied in the range of 176%. These findings provide a more profound understanding of the process and its capabilities and enhance the product development process for metal extrusion-based additive manufacturing.

2016 ◽  
Vol 22 (2) ◽  
pp. 300-310 ◽  
Author(s):  
Rupinder Singh ◽  
Sunpreet Singh ◽  
Karan Mankotia

Purpose Acrylonitrile-butadiene-styrene (ABS)-based plastic is one of the most widely used filament materials for fused deposition modelling (FDM) applications. Because the FDM system, as well as its filament material (ABS), has been patented by commercial manufacturers, the cost of the filament material is significantly high, which affects the commercialization of this technology for medium- and small-scale industries. This problem may be addressed by developing alternative FDM filament material at the user end. The present research work aims to make an effort to develop cost-effective ABS filament with acceptable mechanical properties at par with the filament prepared by commercial manufacturers. Further, mathematical models have been developed for optimizing mechanical properties (like: tensile strength, Young’s modulus and dimensional accuracy) of in-house-fabricated filament. Design/methodology/approach The processing parameters (such as barrel temperature, screw speed and take-up speed) of single-screw extruder used to fabricate ABS filament have been studied and optimized. Findings Although the mechanical properties of fabricated ABS filament were not better than those of the original equipment manufacturer (OEM) filament, yet significant cost reduction was achieved with in-house fabrication. Mechanical properties like tensile strength, Young’s modulus and dimensional accuracy have been optimized using response surface methodology (RSM) for acceptability of in-house-fabricated filament (for commercial applications) at par with the OEM filament. Originality/value This paper highlights the systematic steps for in-house fabrication of cost-effective FDM filament. Further, RSM-based mathematical models have been developed for optimizing mechanical properties of newly fabricated filament.


Author(s):  
Bijan Golkhani ◽  
Anna Weber ◽  
Ludger Keilig ◽  
Susanne Reimann ◽  
Christoph Bourauel

Abstract Objective Investigate and compare the mechanical properties of different aligner materials before and after deep drawing and determine differences in the mechanical properties after thermoforming. Materials and methods Four aligner film sheets from three manufacturers (Duran Plus® [Scheu Dental, Iserlohn, Germany]; Zendura® [ClearCorrect, Bay Materials LLC, Fremont, CA, USA]; Essix ACE® and Essix® PLUS™ [Dentsply Sirona Deutschland, Bensheim, Germany]) were tested in 3‑point bending with support distances of 8, 16, and 24 mm. Dimension of the specimens was 10 × 50 mm2. Two groups each were tested: (1) 10 specimens were investigated in the as-received state (before thermoforming), (2) 10 specimens were deep drawn on a master plate with cuboids of the dimension 10 × 10 × 50 mm3. Then, specimens were cut out of the upper side and lateral walls and were measured in 3‑point bending. Forces and reduction in thickness were measured and corrected theoretical forces of drawn sheets after thickness reduction as well as Young’s modulus were calculated. Results At a support distance of 8 mm and a displacement of 0.25 mm Essix® PLUS™, having the highest thickness in untreated state, showed highest forces of 28.2 N, followed by Duran Plus® (27.3 N), Essix ACE® (21.0 N) and Zendura® (19.7 N). Similar results were registered for the other distances (16, 24 mm). Thermoforming drastically reduced thickness and forces in the bending tests. Forces decreased to around 10% or less for specimens cut from the lateral walls. Young’s modulus decreased significantly for deep drawn foil sheets, especially for Essix® PLUS™. Conclusions Three-point bending is an appropriate method to compare different foil sheet materials. Young’s modulus is significantly affected by thermoforming.


2007 ◽  
Vol 26-28 ◽  
pp. 1165-1170 ◽  
Author(s):  
Xiu Fang Wang ◽  
Xiao Ping Yang ◽  
Zhen Dan Guo ◽  
Yin Chang Zhou ◽  
Hong Wei Song

The mechanical properties of as-cast and hot-forging duplex stainless steel samples with the same compositions were characterized by nanoindentation. The effect of surface treating method and working state of the sample on the nanoindentation results of ferrite and austenite were discussed. The results show that the Young’s modulus and hardness of ferrite and austenite may be affected by the treating method of sample surface. The difference of Young’s modulus average of ferrite or austenite between as-cast and hot-forging duplex stainless steel samples is not great, but the hardness average of ferrite or austenite in hot-forging sample is obviously higher than those of as-cast sample. The difference of hardness between ferrite and austenite in the same sample is not great, but the young’s modulus of ferrite is higher than that of austenite.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


Author(s):  
M. Carraturo ◽  
G. Alaimo ◽  
S. Marconi ◽  
E. Negrello ◽  
E. Sgambitterra ◽  
...  

AbstractAdditive manufacturing (AM), and in particular selective laser melting (SLM) technology, allows to produce structural components made of lattice structures. These kinds of structures have received a lot of research attention over recent years due to their capacity to generate easy-to-manufacture and lightweight components with enhanced mechanical properties. Despite a large amount of work available in the literature, the prediction of the mechanical behavior of lattice structures is still an open issue for researchers. Numerical simulations can help to better understand the mechanical behavior of such a kind of structure without undergoing long and expensive experimental campaigns. In this work, we compare numerical and experimental results of a uniaxial tensile test for stainless steel 316L octet-truss lattice specimen. Numerical simulations are based on both the nominal as-designed geometry and the as-build geometry obtained through the analysis of µ-CT images. We find that the use of the as-build geometry is fundamental for an accurate prediction of the mechanical behavior of lattice structures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Salloom ◽  
S. A. Mantri ◽  
R. Banerjee ◽  
S. G. Srinivasan

AbstractFor decades the poor mechanical properties of Ti alloys were attributed to the intrinsic brittleness of the hexagonal ω-phase that has fewer than 5-independent slip systems. We contradict this conventional wisdom by coupling first-principles and cluster expansion calculations with experiments. We show that the elastic properties of the ω-phase can be systematically varied as a function of its composition to enhance both the ductility and strength of the Ti-alloy. Studies with five prototypical β-stabilizer solutes (Nb, Ta, V, Mo, and W) show that increasing β-stabilizer concentration destabilizes the ω-phase, in agreement with experiments. The Young’s modulus of ω-phase also decreased at larger concentration of β-stabilizers. Within the region of ω-phase stability, addition of Nb, Ta, and V (Group-V elements) decreased Young’s modulus more steeply compared to Mo and W (Group-VI elements) additions. The higher values of Young’s modulus of Ti–W and Ti–Mo binaries is related to the stronger stabilization of ω-phase due to the higher number of valence electrons. Density of states (DOS) calculations also revealed a stronger covalent bonding in the ω-phase compared to a metallic bonding in β-phase, and indicate that alloying is a promising route to enhance the ω-phase’s ductility. Overall, the mechanical properties of ω-phase predicted by our calculations agree well with the available experiments. Importantly, our study reveals that ω precipitates are not intrinsically embrittling and detrimental, and that we can create Ti-alloys with both good ductility and strength by tailoring ω precipitates' composition instead of completely eliminating them.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3467
Author(s):  
Anna Nocivin ◽  
Doina Raducanu ◽  
Bogdan Vasile ◽  
Corneliu Trisca-Rusu ◽  
Elisabeta Mirela Cojocaru ◽  
...  

The present paper analyzed the microstructural characteristics and the mechanical properties of a Ti–Nb–Zr–Fe–O alloy of β-Ti type obtained by combining severe plastic deformation (SPD), for which the total reduction was of etot = 90%, with two variants of super-transus solution treatment (ST). The objective was to obtain a low Young’s modulus with sufficient high strength in purpose to use the alloy as a biomaterial for orthopedic implants. The microstructure analysis was conducted through X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) investigations. The analyzed mechanical properties reveal promising values for yield strength (YS) and ultimate tensile strength (UTS) of about 770 and 1100 MPa, respectively, with a low value of Young’s modulus of about 48–49 GPa. The conclusion is that satisfactory mechanical properties for this type of alloy can be obtained if considering a proper combination of SPD + ST parameters and a suitable content of β-stabilizing alloying elements, especially the Zr/Nb ratio.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 461
Author(s):  
Konrad Kosiba ◽  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

The phase and microstructure formation as well as mechanical properties of the rapidly solidified Mg67Ag33 (at. %) alloy were investigated. Owing to kinetic constraints effective during rapid cooling, the formation of equilibrium phases is suppressed. Instead, the microstructure is mainly composed of oversaturated hexagonal closest packed Mg-based dendrites surrounded by a mixture of phases, as probed by X-ray diffraction, electron microscopy and energy dispersive X-ray spectroscopy. A possible non-equilibrium phase diagram is suggested. Mainly because of the fine-grained dendritic and interdendritic microstructure, the material shows appreciable mechanical properties, such as a compressive yield strength and Young’s modulus of 245 ± 5 MPa and 63 ± 2 GPa, respectively. Due to this low Young’s modulus, the Mg67Ag33 alloy has potential for usage as biomaterial and challenges ahead, such as biomechanical compatibility, biodegradability and antibacterial properties are outlined.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 529
Author(s):  
Chunzhi Du ◽  
Zhifan Li ◽  
Bingfei Liu

Nanoporous Shape Memory Alloys (SMA) are widely used in aerospace, military industry, medical and health and other fields. More and more attention has been paid to its mechanical properties. In particular, when the size of the pores is reduced to the nanometer level, the effect of the surface effect of the nanoporous material on the mechanical properties of the SMA will increase sharply, and the residual strain of the SMA material will change with the nanoporosity. In this work, the expression of Young’s modulus of nanopore SMA considering surface effects is first derived, which is a function of nanoporosity and nanopore size. Based on the obtained Young’s modulus, a constitutive model of nanoporous SMA considering residual strain is established. Then, the stress–strain curve of dense SMA based on the new constitutive model is drawn by numerical method. The results are in good agreement with the simulation results in the published literature. Finally, the stress-strain curves of SMA with different nanoporosities are drawn, and it is concluded that the Young’s modulus and strength limit decrease with the increase of nanoporosity.


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


Sign in / Sign up

Export Citation Format

Share Document