scholarly journals Sustainable Chitosan-Dialdehyde Cellulose Nanocrystal Film

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5851
Author(s):  
Cong Gao ◽  
Shuo Wang ◽  
Baojie Liu ◽  
Shuangquan Yao ◽  
Yi Dai ◽  
...  

In this study, we incorporated 2,3-dialdehyde nanocrystalline cellulose (DANC) into chitosan as a reinforcing agent and manufactured biodegradable films with enhanced gas barrier properties. DANC generated via periodate oxidation of cellulose nanocrystal (CNC) was blended at various concentrations with chitosan, and bionanocomposite films were prepared via casting and characterized systematically. The results showed that DANC developed Schiff based bond with chitosan that improved its properties significantly. The addition of DANC dramatically improved the gas barrier performance of the composite film, with water vapor permeability (WVP) value decreasing from 62.94 g·mm·m−2·atm−1·day−1 to 27.97 g·mm·m−2·atm−1·day−1 and oxygen permeability (OP) value decreasing from 0.14 cm3·mm·m−2·day−1·atm−1 to 0.026 cm3·mm·m−2·day−1·atm−1. Meanwhile, the maximum decomposition temperature (Tdmax) of the film increased from 286 °C to 354 °C, and the tensile strength of the film was increased from 23.60 MPa to 41.12 MPa when incorporating 25 wt.% of DANC. In addition, the chitosan/DANC (75/25, wt/wt) films exhibited superior thermal stability, gas barrier, and mechanical strength compared to the chitosan/CNC (75/25, wt/wt) film. These results confirm that the DANC and chitosan induced films with improved gas barrier, mechanical, and thermal properties for possible use in film packaging.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3090
Author(s):  
Anita Ptiček Siročić ◽  
Ana Rešček ◽  
Zvonimir Katančić ◽  
Zlata Hrnjak-Murgić

The studied samples were prepared from polyethylene (PE) polymer which was coated with modified polycaprolactone (PCL) film in order to obtain bilayer films. Thin PCL film was modified with casein/aluminum oxide compound to enhance vapor permeability as well as mechanical and thermal properties of PE/PCL films. Casein/aluminum oxide modifiers were used in order to achieve some functional properties of polymer film that can be used in various applications, e.g., reduction of water vapor permeability (WVTR) and good mechanical and thermal properties. Significant improvement was observed in mechanical properties, especially in tensile strength as well as in water vapor values. Samples prepared with aluminum oxide particles indicated significantly lower values up to 60%, and samples that were prepared with casein and 5% Al2O3 showed the lowest WVTR value.


e-Polymers ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 038-046
Author(s):  
Xu Yan ◽  
Wanru Zhou ◽  
Xiaojun Ma ◽  
Binqing Sun

Abstract In this study, a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) modified with nano-montmorillonite biocomposite (MMT/PHBH) was fabricated by solution-casting method. The results showed that the addition of MMT increased the crystallinity and the number of spherulites, which indicated that MMT was an effective nucleating agent for PHBH. The maximum decomposition peak of the biocomposites moved to a high temperature and residue presented an increasing trend. The biocomposites showed the best thermal stability at 1 wt% MMT. Compared with PHBH, 182.5% and 111.2% improvement in elastic modulus and tensile strength were obtained, respectively. Moreover, the oxygen permeability coefficient and the water vapor permeability of MMT/PHBH biocomposites decreased by 43.9% and 6.9%, respectively. It was also found that the simultaneous enhancements on the crystallizing, thermal stability, mechanical, and barrier properties of biocomposites were mainly caused by the formation of intercalated structure between PHBH and MMT.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 158
Author(s):  
Yao Dou ◽  
Liguang Zhang ◽  
Buning Zhang ◽  
Ming He ◽  
Weimei Shi ◽  
...  

The development of edible films based on the natural biopolymer feather keratin (FK) from poultry feathers is of great interest to food packaging. Edible dialdehyde carboxymethyl cellulose (DCMC) crosslinked FK films plasticized with glycerol were prepared by a casting method. The effect of DCMC crosslinking on the microstructure, light transmission, aggregate structure, tensile properties, water resistance and water vapor barrier were investigated. The results indicated the formation of both covalent and hydrogen bonding between FK and DCMC to form amorphous FK/DCMC films with good UV-barrier properties and transmittance. However, with increasing DCMC content, a decrease in tensile strength of the FK films indicated that plasticization, induced by hydrophilic properties of the DCMC, partly offset the crosslinking effect. Reduction in the moisture content, solubility and water vapor permeability indicated that DCMC crosslinking slightly reduced the moisture sensitivity of the FK films. Thus, DCMC crosslinking increased the potential viability of the FK films for food packaging applications, offering a value-added product.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 327 ◽  
Author(s):  
Shufang Wu ◽  
Xunjun Chen ◽  
Tiehu Li ◽  
Yingde Cui ◽  
Minghao Yi ◽  
...  

In this study, feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) bionanocomposite films containing graphene oxide (GO) (0.5, 1, 2, and 3 wt%) or graphene (0.5, 1, 2, and 3 wt%) were prepared using a solvent casting method. The scanning electron microscopy results indicated that the dispersion of GO throughout the film matrix was better than that of graphene. The successful formation of new hydrogen bonds between the film matrix and GO was confirmed through the use of Fourier-transform infrared spectroscopy. The tensile strength, elastic modulus, and initial degradation temperature of the films increased, whereas the total soluble mass, water vapor permeability, oxygen permeability, and light transmittance decreased following GO or graphene incorporation. In summary, nanoblending is an effective method to promote the application of FK/PVA/Tris-based blend films in the packaging field.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 298 ◽  
Author(s):  
Shufang Wu ◽  
Xunjun Chen ◽  
Minghao Yi ◽  
Jianfang Ge ◽  
Guoqiang Yin ◽  
...  

In this study, feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) bionanocomposite films containing two types of nanoparticles, namely one-dimensional sodium montmorillonite (MMT) clay platelets (0.5, 1, 3, and 5 wt%) and three-dimensional TiO2 nanospheres (0.5, 1, 3, and 5 wt%), are prepared using solvent casting method. X-ray diffraction studies confirm the completely exfoliated structure of FK/PVA/Tris/MMT nanocomposites. The successful formation of new hydrogen bonds between the hydroxyl groups of the film matrix and the nanofillers is confirmed by Fourier transform infrared spectroscopy. The tensile strength, elongation at break, and initial degradation temperature of the films are enhanced after MMT and TiO2 incorporation. The water vapor permeability, oxygen permeability, and light transmittance decrease with increase in TiO2 and MMT contents. In summary, nanoblending is an effective method to promote the application of FK/PVA/Tris blend films in the packaging field.


Coatings ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 183 ◽  
Author(s):  
Thi Cao ◽  
So-Young Yang ◽  
Kyung Song

In this study, barnyard millet starch (BMS) was used to prepare edible films. Antioxidant activity was conferred to the BMS film by incorporating borage seed oil (BO). The physical, optical, and thermal properties as well as antioxidant activities of the films were evaluated. The incorporation of BO into the BMS films decreased the tensile strength from 9.46 to 4.69 MPa and increased the elongation at break of the films from 82.49% to 103.87%. Water vapor permeability, water solubility, and moisture content of the BMS films decreased with increasing BO concentration, whereas Hunter b value and opacity increased, L and a values of the films decreased. The BMS films containing BO exhibited antioxidant activity that increased proportionally with increased BO concentration. In particular, the BMS film with 1.0% BO exhibited the highest antioxidant activity and light barrier properties among the BMS films. Therefore, the BMS films with added BO can be used as an antioxidant packaging material.


2015 ◽  
Vol 6 (1) ◽  
pp. 80
Author(s):  
Matheus Luz Alberti ◽  
Sílvio José De Souza ◽  
Heliberto Gonçalves ◽  
Fabio Yamashita ◽  
Marianne Ayumi Shirai

<p>The use of blends containing biodegradable polymers like starch and poly (lactic acid) (PLA) has gained considerable attention, especially for the food packaging production. Current research has also highlighted the use of chitosan because their antimicrobial activity, biodegradability and applicability in the production of active biodegradable food packaging. The objective of this work was to produce cassava starch and PLA sheets incorporated with chitosan by flat extrusion process (calendering-extrusion), and evaluate the mechanical, water vapor barrier and microstructural properties. In order to simplify the obtainment of the material reducing processing steps, all components of the blend were homogenized in one step extrusion The incorporation of chitosan in the starch/PLA sheets decreased significantly the tensile strength, Young's modulus, elongation at break and density. In addition, the scanning electron microscopy images showed the formation of non-homogeneous mixtures with the presence of pores between the blend compounds, and this fact affected the water vapor barrier properties increasing water vapor permeability, solubility and diffusion coefficients. It was possible to conclude that although the incorporation of chitosan to the starch/PLA sheets has not contributed to obtain materials with suitable properties, it was able to produce them by calendering-extrusion process in pilot scale. Studies about chitosan incorporation in starch and PLA sheets still needed.</p><p>&nbsp;</p><p>DOI: 10.14685/rebrapa.v6i1.208</p><p>&nbsp;</p>


2021 ◽  
Author(s):  
Chaehyun Jo ◽  
Sam Soo Kim ◽  
Srinivasan Ramalingam ◽  
Prabakaran D. S ◽  
Balasubramanian Rukmanikrishnan ◽  
...  

Abstract Cellulose pulp (CP), polyurethane (PU), and curcumin-based biocompatible composite films were prepared using a simple cost-effective method. These materials dissolved well in the ionic liquid solvent N-methylmorpholine N-oxide. Significant structural and microstructural changes were observed in CP upon the addition of PU. These changes were studied using Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The 5% and 10% gravimetric losses of the CP/PU/curcumin composite were found to be in the range 87.2–182.3 ºC and 166.7–249.8 ºC, respectively. The addition of PU significantly improved the thermal stability and water barrier properties of the composites. All the composites exhibited single Tg values in the range 147.4–154.2 ºC. The tensile strength of CP was measured to be 93.2 MPa, which dropped to 14.1 MPa for the 1:0.5 CP/PU composite and then steadily increased to 30.5 MPa with further addition of PU. The elongation at break of the composites decreased from 8.1 to 3.7% with the addition of PU. The addition of PU also improved the water vapor permeability (3.96 ×10–9 to 1.75 ×10–9 g m–1 s–1 Pa–1) and swelling ratio (285 to 202%) of the CP composite films. The CP/PU/curcumin composite exhibited good antioxidant activity and no cytotoxicity when tested on the HaCat cell line. The visual appearance and UV transmittance (86.2–32.9% at 600 nm) of the CP composite films were significantly altered by the incorporation of PU and curcumin. This study demonstrates that CP/PU/curcumin composites can be used for various packaging and biomedical applications.


2021 ◽  
Vol 12 (4) ◽  
pp. 4603-4612

This study explores the effect of Clove essential oil (CEO) nanoemulsion on the physical and physicochemical properties of potato starch edible films. Mechanical properties at puncture tests, film thermal stability, morphology, color CIELAB parameters, water vapor permeability, and gas barrier properties towards oxygen and carbon dioxide were determined. Films were characterized with white color and high opacity. The films' surface morphology was examined by polarized microscopy, and homogeneous distribution of the incorporated nanoemulsion into the edible film was observed. The loaded CEO improved the water and gas barrier properties of the films. In this way, the formulated new multicomponent films are suitable for use in the design of active food packaging.


Sign in / Sign up

Export Citation Format

Share Document