scholarly journals Effect of TiO2 Concentration on Microstructure and Properties of Composite Cu–Sn–TiO2 Coatings Obtained by Electrodeposition

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6179
Author(s):  
Aliaksandr A. Kasach ◽  
Dzmitry S. Kharytonau ◽  
Andrei V. Paspelau ◽  
Jacek Ryl ◽  
Denis S. Sergievich ◽  
...  

In this work, Cu–Sn–TiO2 composite coatings were electrochemically obtained from a sulfate bath containing 0–10 g/L of TiO2 nanoparticles. The effect of TiO2 particles on kinetics of cathodic electrodeposition has been studied by linear sweep voltammetry and chronopotentiometry. As compared to the Cu–Sn alloy, the Cu–Sn–TiO2 composite coatings show rougher surfaces with TiO2 agglomerates embedded in the metal matrix. The highest average amount of included TiO2 is 1.7 wt.%, in the case of the bath containing 5 g/L thereof. Composite coatings showed significantly improved antibacterial properties towards E. coli ATCC 8739 bacteria as compared to the Cu–Sn coatings of the same composition. Such improvement has been connected with the corrosion resistance of the composites studied by linear polarization and electrochemical impedance spectroscopy. In the bacterial media and 3% NaCl solutions, Cu–Sn–TiO2 composite coatings have lower corrosion resistance as compared to Cu–Sn alloys, which is caused by the nonuniformity of the surface.

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 704
Author(s):  
Marija Riđošić ◽  
Nebojša D. Nikolić ◽  
Asier Salicio-Paz ◽  
Eva García-Lecina ◽  
Ljiljana S. Živković ◽  
...  

Electrodeposition and characterization of novel ceria-doped Zn-Co composite coatings was the main goal of this research. Electrodeposited composite coatings were compared to pure Zn-Co coatings obtained under the same conditions. The effect of two ceria sources, powder and home-made sol, on the morphology and corrosion resistance of the composite coatings was determined. During the electrodeposition process the plating solution was successfully agitated in an ultrasound bath. The source of the particles was found to influence the stability and dispersity of plating solutions. The application of ceria sol resulted in an increase of the ceria content in the resulting coating and favored the refinement from cauliflower-like morphology (Zn-Co) to uniform and compact coral-like structure (Zn-Co-CeO2 sol). The corrosion resistance of the composite coatings was enhanced compared to bare Zn-Co as evidenced by electrochemical impedance spectroscopy and scanning Kelvin probe results. Zn-Co doped with ceria particles originating from ceria sol exhibited superior corrosion resistance compared to Zn-Co-CeO2 (powder) coatings. The self-healing rate of artificial defect was calculated based on measured Volta potential difference for which Zn-Co-CeO2 (sol) coatings exhibited a self-healing rate of 73.28% in a chloride-rich environment.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 669
Author(s):  
Xinyu Zhou ◽  
Yiyong Wang ◽  
Xianglin Liu ◽  
Zhipeng Liang ◽  
Hui Jin

Ni/nano-Y2O3 composite films were successfully prepared by electrochemical deposition using an acid sulfamate bath. The influence of solid particles added to electrolyte on electrodeposition was investigated by electrochemical measurement methods. The linear sweep voltammetry test showed that the composite deposition took place at a greater potential than that of nickel, and the presence of nano-Y2O3 decreased cathodic polarization. Chronoamperometry studies indicated that the nucleation model of both deposits similarly approached the theoretical instantaneous nucleation mode based on the Scharifker–Hills model. The Y2O3 particles adsorbed on the cathodic surface were shown to facilitate the nucleation/growth of the nickel matrix which is consistent with the deposition kinetics parameters calculated by non-linear fitting experimental curves. The results of electrochemical impedance spectroscopy showed that the presence of Y2O3 particles in a bath is beneficial for the decrease in charge transfer resistance in the deposition. The atomic force microscopy observations of both deposits obtained in the initial electrodeposition stage confirmed that the Ni-Y2O3 composite had a higher grain number and finer mean grain size.


Author(s):  
Muddasir Nawaz ◽  
Sehrish Habib ◽  
Adnan Khan ◽  
Abdul Shakoor ◽  
Ramazan Kahraman

The use of organic coating for the metals has been widely being used to protect the surface against corrosion. Polymeric coating incorporated with Nanocontainers loaded with inhibitor and self-healing provides better corrosion resistance. Cellulose microfibers (CMFs) used as smart carriers were synthesized and loaded with dodecylamine (DOC)-inhibitor and polyethyleneimine (PEI)-both inhibitor and self-healing agents. Smart polymeric coatings were developed by mixing CMF/DOC and CMFs/PEI into the epoxy matrix. Reference coatings (that has only CMFs) were also prepared for a compersion. Scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR) and thermal gravitational analysis (TGA) were used to confirm the loading of DOC and PEI onto the CMFs. UV-vis analysis indicates that the self-release of inhibitor from CMFs is sensitive to pH of the solution and the immersion time. Recovery of controlled surface damage confirms the decent self-healing ability of the prepared smart coatings is due to the efficient release of inhibitor (DOC) and self-healing agent (PEI) in the damaged area leading to the formation of a protective film. Electrochemical impedance spectroscopy (EIS) results demonstrate that corrosion resistance of the smart coating increases with an increase in immersion time which is due to the progressive release of inhibitors from CMFs in response to the pH change. Therefore, smart coatings demonstrate superior properties as compared to the reference coatings. The study reveals the polymeric composite coatings have potential to inhibit the corrosion of steel for oil and gas industry.


2015 ◽  
Vol 228 ◽  
pp. 237-241
Author(s):  
Magdalena Popczyk ◽  
B. Łosiewicz

The Ni+MoS2composite coatings were prepared by electrodeposition under galvanostatic conditions from the Ni-plating bath containing suspended MoS2powder (100 mesh). Investigations of hydrogen evolution reaction (HER) were carried out using steady-state polarization measurements and electrochemical impedance spectroscopy (EIS) in 5 M KOH solution on the coatings obtained at 30, 40, and 50°C. It was found that the kinetics of the HER on the Ni+MoS2coatings decreases with the increase in the electrodeposition temperature of the coatings. This effect is attributed to decreasing content of MoS2(from 26.4 to 18.0 wt.%) embedded into the Ni matrix as composite crystalline component having the electrocatalytic properties towards the HER and/or surface development of the coatings. The higher amount of MoS2was embedded, the more porous electrodes containing pear-shape pores on the surface were produced what was detected by EIS.


MRS Advances ◽  
2020 ◽  
Vol 5 (40-41) ◽  
pp. 2129-2137 ◽  
Author(s):  
Wenwen Dou ◽  
Wen Li ◽  
Yuchen Cai ◽  
Mengyao Dong ◽  
Xiaojing Wang ◽  
...  

ABSTRACTTo improve the corrosion resistance and to increase the hardness of copper substrate in marine environment, the Cu-Ni/Ni-P composite coatings were prepared on the copper substrate using the galvanostatic electrolytic deposition method. The deposition current densities were explored to find the optimized deposition conditions for forming the composite coatings. Corrosion resistance properties were analyzed using the polarization curves and electrochemical impedance spectroscopy (EIS). Considering the corrosion resistance and hardness, the −20 mA/cm2 was selected to deposit Cu-Ni coatings on copper substrate and the −30 mA/cm2 was selected to deposit Ni-P coating on the Cu-Ni layer. The Cu-Ni/Ni-P composite coatings not only exhibited superior corrosion resistance compared to single Cu-Ni coating in 3.5 wt.% NaCl solution, but also showed much better mechanical properties than single Cu-Ni coating.


2019 ◽  
Vol 26 (10) ◽  
pp. 1950080
Author(s):  
JIBO JIANG ◽  
HAOTIAN CHEN ◽  
LIYING ZHU ◽  
YAOXIN SUN ◽  
WEI QIAN ◽  
...  

Graphene oxide (GO) sheet and ultrasonic field (UF) were successfully employed to produce Ni–B/GO and UF–Ni–B/GO composite coatings on Q235 mild steel by electroless plating. The composite coatings’ structure and surface morphology were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Results showed that GO was successfully co-deposited in the Ni–B alloy. Moreover, UF–Ni–B/GO composite coatings have smoother surface and thicker cross-section than others. The microhardness and corrosion resistance of the sample coatings were determined using Vickers hardness tests, Tafel electrochemical tests and electrochemical impedance measurements (EIS) in 3.5[Formula: see text]wt.% NaCl solution to receive the effect of GO and ultrasonic. The findings indicated that UF–Ni–B/GO exhibited optimum hardness (856[Formula: see text]HV) and enhanced corrosion resistance (6.38 [Formula: see text][Formula: see text] over the Ni–B and Ni–B/GO coatings. Due to these interesting properties of the coating, it could be used as a protective material in the automotive and aerospace industries for parts of machines that were manipulated in high temperature and corrosive environments.


2011 ◽  
Vol 399-401 ◽  
pp. 2055-2060
Author(s):  
Ji Bo Jiang ◽  
Wei Dong Liu ◽  
Lei Zhang ◽  
Qing Dong Zhong ◽  
Yi Wang ◽  
...  

Ni–B4C composite coatings on carbon steel substrates with various contents of B4C nano-particulates were prepared by electrodeposition in Ni plating bath containing B4C nano-particulates. Microhardness, Scanning Electron Microscopy (SEM), Tafel polarization and Electrochemical Impedance Spectroscopy (EIS) measurements were used to compare pure nickel coatings and Ni–B4C composite coatings. Pure Ni coating microhardness is lower than that of Ni–B4C coatings and the microhardness of the composite coatings increases with the increase of the content of B4C nano-particulates. The effects of various contents of B4C nano-particulates on the corrosion resistance were investigated and it was found that the best anti–corrosion property of Ni–B4C composite coatings is at 6 g/L B4C in the bath formulation.


2008 ◽  
Vol 373-374 ◽  
pp. 212-215 ◽  
Author(s):  
Yun Ying Fan ◽  
Ying Jie Zhang ◽  
Peng Dong

Electrodeposited Zn and Zn-Fe alloy have been applied widely to protect steel from corrosion, but the property of coating still needs to be improved. In this paper, Zn-Fe-SiO2 composite coatings are electrodeposited from Zn-Fe alloy electrolyte containing SiO2 particles. Zinc based coatings with Fe% >1%(mass) are deposited from sulfate bath, and coatings with Fe% <1%(mass) are deposited from chloride bath. Particle content in the composite coating generally increases with particle concentration under an adequate agitation and then tends to saturation. The optimum particle content in the composite coating is 0.5%(mass). Corrosion resistance, porosity, hydrogen embrittlement and surface morphology of Zn-Fe-SiO2 composite coatings have been tested and compared with electrodeposited Zn and Zn-Fe alloy. The data implies that Zn-Fe-SiO2 composite coating has the best corrosion resistance, lowest porosity, lowest hydrogen content and the finest crystal. All the results show that Zn-Fe-SiO2 composite coating is satisfactory to be used as anti-corrosion material for steel and has a great future in application.


2012 ◽  
Vol 05 ◽  
pp. 810-816 ◽  
Author(s):  
S.R. Allahkaram ◽  
T. Rabizadeh

The process of electroless plating Ni - P and Ni - P /nano- SiO 2 on API-5L X65 carbon steels was improved. The Ni - P /nano- SiO 2 composite coatings were prepared from the bathes containing different concentrations of nano- SiO 2 particles. The coatings surface and morphologies were observed via scanning electron microscopy (SEM). The chemical compositions were analyzed by EDAX. The corrosion behaviors were evaluated by electrochemical impedance spectroscopy tests. The experimental results indicated that SiO 2 nano-particles co-deposited but some agglomeration occurred. Micro-hardness of electroless Ni - P - SiO 2 composite coatings increased due to the existence of nano-particles. Corrosion tests showed that both electroless Ni - P and Ni - P /nano- SiO 2 composite coatings demonstrated significant improvement of corrosion resistance of substrate in salty atmosphere and latter coating type appeared to offer a better corrosion protection.


2021 ◽  
Vol 11 (19) ◽  
pp. 9311
Author(s):  
Michelina Catauro ◽  
Ylenia D’Errico ◽  
Antonio D’Angelo ◽  
Ronald J. Clarke ◽  
Ignazio Blanco

The aim of this work was the synthesis of hybrid materials of iron (II)-based therapeutic systems via the sol-gel method. Increasing amounts of polyethylene glycol (PEG 6, 12, 24, 50 wt%) were added to SiO2/Fe20 wt% to modulate the release kinetics of the drug from the systems. Fourier-transform infrared (FTIR) spectroscopy was used to study the interactions between different components in the hybrid materials. The release kinetics in a simulated body fluid (SBF) were investigated, and the amount of Fe2+ released was detected via ultraviolet-visible spectroscopy (UV-Vis) after reaction with ortho-phenanthroline. Furthermore, biological characterization was carried out. The bioactivity of the synthesized hybrid materials was evaluated via the formation of a layer of hydroxyapatite on the surface of samples soaked in SBF using spectroscopy. Finally, the potential antibacterial properties of seven different materials against two different bacteria—E. coli and S. aureus—were investigated.


Sign in / Sign up

Export Citation Format

Share Document