scholarly journals The Characteristic of Fe as a β-Ti Stabilizer in Ti Alloys

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7516
Author(s):  
Jin Min ◽  
Yanhua Guo ◽  
Jingzhe Niu ◽  
Juexian Cao ◽  
Zhonggang Sun ◽  
...  

It is well known that adding elements, especially β-Ti stabilizers, are holding a significant effect on titanium alloy strength due to the solution and precipitate strengthening mechanisms. In order to reveal the Fe strengthening mechanism in titanium, this study investigate the effect of Fe on the stability of β-Ti and the phase transition between α, β and ω phase with first-principle calculations. According to our study, Fe is a strong β-Ti phase stabilizer could owe to the 3d orbital into eg and t2g states which results in strong hybridization between Fe-d orbital and Ti-d orbital. The phase transition from ω to β or from α to β becomes easier for Fe-doped Ti compared to pure titanium. Based on our results, it is found that one added Fe atom can lead the phase transition (ω → β) of at least nine titanium atoms, which further proves that Fe has a strong stabilizing effect on β-Ti phase. This result provides a solid guide for the future design of high-strength titanium with the addition of Fe.

2018 ◽  
Vol 69 (6) ◽  
pp. 1416-1418
Author(s):  
Alexandru Szabo ◽  
Ilare Bordeasu ◽  
Ion Dragos Utu ◽  
Ion Mitelea

Hydroxyapatite (HA) is a very common material used for biomedical applications. Usually, in order to improve its poor mechanical properties is combined or coated with other high-strength materials.The present paper reports the manufacturing and the biocompatibility behaviour of two different biocomposite coatings consisting of alumina (Al2O3) and hydroxyapatite (HA) using the high velocity oxygen fuel (HVOF) spraying method which were deposited onto the surface of a commercially pure titanium substrate. The biological properties of the Al2O3-HA materials were evaluated by in vitro studies. The morphology of the coatings before and after their immersing in the simulated body fluid (SBF) solution was characterized by scanning electron microscopy (SEM). The results showed an important germination of the biologic hydroxyapatite crystallite on the surface of both coatings.


2019 ◽  
Vol 298 ◽  
pp. 59-63 ◽  
Author(s):  
Zheng Cun Zhou ◽  
J. Du ◽  
S.Y. Gu ◽  
Y.J. Yan

The β-Ti alloys exhibit excellent shape memory effect and superelastic properties. The interstitial atoms in the alloys have important effect on their physical and mechanical properties. For the interstitial atoms, the internal friction technique can be used to detect their distributions and status in the alloys. The anelastic relaxation in β-Ti alloys is discussed in this paper. β-Ti alloys possesses bcc (body center body) structure. The oxygen (O) atoms in in the alloys is difficult to be removed. The O atoms located at the octahedral sites in the alloys will produce relaxation under cycle stress. In addition, the interaction between the interstitial atoms and substitute atoms, e.g., Nb-O,Ti-O can also produce relaxation. Therefore, the observed relaxational internal friction peak during the measuring of internal friction is widened. The widened multiple relaxation peak can be revolved into Debye,s elemental peaks in Ti-based alloys. The relaxation peak is associated with oxygen movements in lattices under the application of cycle stress and the interactions of oxygen-substitute atoms in metastable β phase (βM) phase for the water-cooled specimens and in the stable β (βS) phase for the as-sintered specimens. The damping peak height is not only associated with the interstitial oxygen, but also the stability and number of βM in the alloys.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1127
Author(s):  
Yuejie Jin ◽  
Dingrong Liu ◽  
Jinhua Hu

Polyglycerol polyricinolate (PGPR) and polyglycerol-2 dioleate were selected as model surfactants to construct water-in-oil (W/O) emulsions, and the effect of interfacial rheological properties of surfactant film on the stability of emulsions were investigated based on the interfacial dilatational rheological method. The hydrophobicity chain of PGPR is polyricinic acid condensed from ricinic acid, and that of polyglycerol-2 dioleate is oleic acid. Their dynamic interfacial tensions in 15 cycles of interfacial compression-expansion were determined. The interfacial dilatational viscoelasticity was analyzed by amplitude scanning in the range of 1–28% amplitude and frequency sweep in the range of 5–45 mHz under 2% amplitude. It was found that PGPR could quickly reach adsorption equilibrium and form interfacial film with higher interfacial dilatational viscoelastic modulus to resist the deformation of interfacial film caused by emulsion coalescence, due to its branched chain structure and longer hydrophobic chain, and the emulsion thus presented good stability. However, polyglycerol-2 dioleate with a straight chain structure had lower interfacial tension, and it failed to resist the interfacial disturbance caused by coalescence because of its lower interfacial dilatational viscoelastic modulus, and thus the emulsion was unstable. This study reveals profound understanding of the influence of branched structure of PGPR hydrophobic chain on the interfacial film properties and the emulsion stability, providing experimental reference and theoretical guidance for future design or improvement of surfactant.


Rare Metals ◽  
2021 ◽  
Author(s):  
Yi-Hai Yang ◽  
Sheng-Yao Li ◽  
Zhen-Shan Cui ◽  
Zhou Li ◽  
Yun-Ping Li ◽  
...  

2009 ◽  
Vol 618-619 ◽  
pp. 97-100
Author(s):  
Yong Qing Zhao ◽  
Heng Lei Qu ◽  
Jun Chen

The recent shift in the design focus for aeroplanes from strength to damage tolerance has led to a subsequent shift in the focus of Ti alloy research. China first started to research Ti alloys with damage tolerance from the year 2000. The first product stemming from this research is a Ti alloy with high strength, high toughness and damage tolerance (TC21). TC21 exhibits high strength (UTS  1100MPa), high fracture toughness (K1c  70MPa.m1/2) and a low crack propagation rate (da/dN being similar to Ti-6-4 with  annealing). Another Ti alloy, named TC4-DT, has also been produced. It has moderate strength, along with high toughness and damage tolerance (UTS  900MPa, K1c  70MPa.m1/2, da/dN being similar to Ti-6-4 with  annealing). Both TC21 and TC4-DT are now undergoing rapid development, with the former alloy also being applied to a full scale aeronautical application. Both TC21 and TC4-DT have promising futures in the industry. They will be the main Ti alloys with damage tolerance utilised in the Chinese market.


2013 ◽  
Vol 859 ◽  
pp. 222-227
Author(s):  
Hong Jun Liu ◽  
Jin Hua Tan ◽  
Xue Wen Su ◽  
Hao Wu

Two typical monitoring sections are selected for obtaining the change law of the surface subsidence and the settlement after construction of soft soil foundations, and determining the reasonable unloading time. The research results show that the surface settlement rate is large during the filling stage, the rate decreases after the loading and gradually stabilized. The embankment midline settlement is larger than the settlement of the road shoulder which is concluded from the fact that the subsidence of the middle settlement plate is larger than those of the left and right plate. The surface subsidence rate is less than 5mm per month during the two month before unloading according to the data in the tables. The settlement after construction presumed from the middle plate is more significantly larger than that of left and right sides, hence, as the unloading basis of preloading drainage method in soft soil foundation treatment the settlement after construction which is calculated from the midline monitoring data of the road is appropriate. After 6 months the calculated post-construction settlements of the two sections are in the scope of the design requirement since they decrease with preloading time. The reliable basis is provided for the future design and construction of soft foundation in this area through the research results.


2012 ◽  
Vol 520 ◽  
pp. 57-62
Author(s):  
De Hai Ping ◽  
S.Q. Wu ◽  
Y. Yamabe-Mitarai

The microstructural evolution and elevated temperature tensile properties of Ti-6.6Al-5.2Sn-1.8Zr-(0~3.8)Sc (wt%) alloys have been investigated. The Sc-added alloys showed improved yield strength at 650°C and 750°C and with the elongation above 10%. Minor addition of Sc was found to significantly reduce the as-cast grain size. Higher amount of Sc additions resulted in the formation of high density of Sc-oxide, which causes the high strength at elevated temperatures and the reduction of ductility. High density of α2-Ti3Al fine precipitates with an average size of about 20 nm were observed inside equiaxed primary α (αp) grains in the Sc-free or minor Sc added alloys. However, precipitation free zone (PFZ) also formed in those alloys, where grain boundaries are free from any precipitates. Higher Sc addition was found to hinder the formation of PFZ and α2–precipitates.


2021 ◽  
pp. 32-37
Author(s):  
Andrei A. Burdakin ◽  
Valerii R. Gavrilov ◽  
Ekaterina A. Us ◽  
Vitalii S. Bormashov

The problem of ensuring stability of Earth observation space-borne instruments undertaking long-term temperature measurements within thermal IR spectral range is described. For in-flight reliable control of the space-borne IR instruments characteristics the stability of onboard reference sources should be improved. The function of these high-stable sources will be executed by novel onboard blackbodies, incorporating the melt↔freeze phase transition phenomenon, currently being developed. As a part of these works the task of realizing an on-orbit calibration scale within the dynamic temperature range of Earth observation systems 210−350 K based on fixed-point phase transition temperatures of a number of potentially suitable substances is advanced. The corresponding series of the onboard reference blackbodies will be set up on the basis of the on-orbit calibration scale fixed points. It is shown that the achievement of the target lies in carrying out a number of in-flight experiments with the selected fixed points and the prospective onboard fixed-point blackbodies prototypes. The new In-Bi eutectic alloy melt temperature fixed point (~345 K) is proposed as the significant fixed points of the future on-orbit calibration scale. The results of the new fixed point preliminary laboratory studies have been analyzed. The results allowed to start preparation of the in-flight experiments investigating the In-Bi alloy for the purpose of its application in the novel onboard reference sources.


Sign in / Sign up

Export Citation Format

Share Document