scholarly journals Investigation on Rheological Properties of Water-Based Novel Ternary Hybrid Nanofluids Using Experimental and Taguchi Method

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 28
Author(s):  
Jalal Mohammed Zayan ◽  
Abdul Khaliq Rasheed ◽  
Akbar John ◽  
Mohammad Khalid ◽  
Ahmad Faris Ismail ◽  
...  

This study presents the rheological behavior of water-based GO-TiO2-Ag and rGO-TiO2-Ag ternary-hybrid nanofluids. The impact of nanoparticles’ volumetric concentration and temperature on the rheological properties were studied. All experiments were performed under temperatures ranging from 25 to 50 °C in the solid volume concentration range of 0.5–0.00005%. The data optimization technique was adopted using the Taguchi method. The types of nanomaterials, concentration, temperature, and shear rate were chosen to optimize the viscosity and shear stress. The effect of shear stress, angular sweep, frequency sweep, and damping factor ratio is plotted. The experimental results demonstrated that the rheological properties of the ternary hybrid nanofluid depend on the ternary hybrid nanofluid’s temperature. The viscosity of ternary hybrid nanofluids (THNf) change by 40% for GO-TiO2-Ag and 33% for rGO-TiO2-Ag when temperature and shear rates are increased. All the ternary hybrid nanofluids demonstrated non-Newtonian behavior at lower concentrations and higher shear stress, suggesting a potential influence of nanoparticle aggregation on the viscosity. The dynamic viscosity of ternary hybrid nanofluid increased with enhancing solid particles’ volume concentration and temperature.

2014 ◽  
Vol 592-594 ◽  
pp. 922-926 ◽  
Author(s):  
Devasenan Madhesh ◽  
S. Kalaiselvam

Analysis of heat transfer behaviour of hybrid nanofluid (HyNF) flow through the tubular heat exchanger was experimentally investigated. In this analysis the effects of thermal characteristics of forced convection, Nusselt number, Peclet number, and overall heat transfer coefficient were investigated.The nanofluid was prepared by dispersing the copper-titania hybrid nanocomposite (HyNC) in the water. The experiments were performed for various nanoparticle volume concentrations addition in the base fluid from the range of 0.1% to 1.0%. The experimental results show that the overall heat transfer coefficient was found to increases maximum by 30.4%, up to 0.7% volume concentration of HyNC.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Solomon O. Giwa ◽  
Mohsen Sharifpur ◽  
Mohammad H. Ahmadi ◽  
S. M. Sohel Murshed ◽  
Josua P. Meyer

The superiority of nanofluid over conventional working fluid has been well researched and proven. Newest on the horizon is the hybrid nanofluid currently being examined due to its improved thermal properties. This paper examined the viscosity and electrical conductivity of deionized water (DIW)-based multiwalled carbon nanotube (MWCNT)-Fe2O3 (20:80) nanofluids at temperatures and volume concentrations ranging from 15 °C to 55 °C and 0.1–1.5%, respectively. The morphology of the suspended hybrid nanofluids was characterized using a transmission electron microscope, and the stability was monitored using visual inspection, UV–visible, and viscosity-checking techniques. With the aid of a viscometer and electrical conductivity meter, the viscosity and electrical conductivity of the hybrid nanofluids were determined, respectively. The MWCNT-Fe2O3/DIW nanofluids were found to be stable and well suspended. Both the electrical conductivity and viscosity of the hybrid nanofluids were augmented with respect to increasing volume concentration. In contrast, the temperature rise was noticed to diminish the viscosity of the nanofluids, but it enhanced electrical conductivity. Maximum increments of 35.7% and 1676.4% were obtained for the viscosity and electrical conductivity of the hybrid nanofluids, respectively, when compared with the base fluid. The obtained results were observed to agree with previous studies in the literature. After fitting the obtained experimental data, high accuracy was achieved with the formulated correlations for estimating the electrical conductivity and viscosity. The examined hybrid nanofluid was noticed to possess a lesser viscosity in comparison with the mono-particle nanofluid of Fe2O3/water, which was good for engineering applications as the pumping power would be reduced.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1242
Author(s):  
Umair Khan ◽  
Aurang Zaib ◽  
Anuar Ishak ◽  
Fahad S. Al-Mubaddel ◽  
Sakhinah Abu Bakar ◽  
...  

The present study reveals the behavior of shear-thickening and shear-thinning fluids in magnetohydrodynamic flow comprising the significant impact of a hybrid nanofluid over a porous radially shrinking/stretching disc. The features of physical properties of water-based Ag/TiO2 hybrid nanofluid are examined. The leading flow problem is formulated initially in the requisite form of PDEs (partial differential equations) and then altered into a system of dimensionless ODEs (ordinary differential equations) by employing suitable variables. The renovated dimensionless ODEs are numerically resolved using the package of boundary value problem of fourth-order (bvp4c) available in the MATLAB software. The non-uniqueness of the results for the various pertaining parameters is discussed. There is a significant enhancement in the rate of heat transfer, approximately 13.2%, when the impact of suction governs about 10% in the boundary layer. Therefore, the heat transport rate and the thermal conductivity are greater for the new type of hybrid nanofluid compared with ordinary fluid. The bifurcation of the solutions takes place in the problem only for the shrinking case. Moreover, the sketches show that the nanoparticle volume fractions and the magnetic field delay the separation of the boundarylayer.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1100
Author(s):  
F. Benedict ◽  
Amit Kumar ◽  
K. Kadirgama ◽  
Hussein A. Mohammed ◽  
D. Ramasamy ◽  
...  

Due to the increasing demand in industrial application, nanofluids have attracted the considerable attention of researchers in recent decades. The addition of nanocellulose (CNC) with water (W) and ethylene glycol (EG) to a coolant for a radiator application exhibits beneficial properties to improve the efficiency of the radiator. The focus of the present work was to investigate the performance of mono or hybrid metal oxide such as Al2O3 and TiO2 with or without plant base-extracted CNC with varying concentrations as a better heat transfer nanofluid in comparison to distilled water as a radiator coolant. The CNC is dispersed in the base fluid of EG and W with a 60:40 ratio. The highest absorption peak was noticed at 0.9% volume concentration of TiO2, Al2O3, CNC, Al2O3/TiO2, and Al2O3/CNC nanofluids which indicates a better stability of the nanofluids’ suspension. Better thermal conductivity improvement was observed for the Al2O3 nanofluids in all mono nanofluids followed by the CNC and TiO2 nanofluids, respectively. The thermal conductivity of the Al2O3/CNC hybrid nanofluids with 0.9% volume concentration was found to be superior than that of the Al2O3/TiO2 hybrid nanofluids. Al2O3/CNC hybrid nanofluid dominates over other mono and hybrid nanofluids in terms of viscosity at all volume concentrations. CNC nanofluids (all volume concentrations) exhibited the highest specific heat capacity than other mono nanofluids. Additionally, in both hybrid nanofluids, Al2O3/CNC showed the lowest specific heat capacity. The optimized volume concentration from the statistical analytical tool was found to be 0.5%. The experimental results show that the heat transfer coefficient, convective heat transfer, Reynolds number and the Nusselt number have a proportional relationship with the volumetric flow rate. Hybrid nanofluids exhibit better thermal conductivity than mono nanofluids. For instance, a better thermal conductivity improvement was shown by the mono Al2O3 nanofluids than the CNC and TiO2 nanofluids. On the other hand, superior thermal conductivity was observed for the Al2O3/CNC hybrid nanofluids compared to the other mono and hybrid ones (Al2O3/TiO2).


2021 ◽  
pp. 1-17
Author(s):  
Rida Elgaddafi ◽  
Ramadan Ahmed ◽  
Hamidreza Karami ◽  
Mustafa Nasser ◽  
Ibnelwaleed Hussein

Summary The accumulation of rock cuttings, proppant, and other solid debris in the wellbore caused by inadequate cleanout remarkably impedes field operations. The cuttings removal process becomes a more challenging task as the coiled-tubing techniques are used during drilling and fracturing operations. This article presents a new hole cleaning model, which calculates the critical transport velocity (CTV) in conventional and fibrous water-based fluids. The study is aimed to establish an accurate mechanistic model for optimizing wellbore cleanout in horizontal and inclined wells. The new CTV model is established to predict the initiation of bed particle movement during cleanout operations. The model is formulated considering the impact of fiber using a special drag coefficient (i.e., fiber drag coefficient), which represents the mechanical and hydrodynamic actions of suspended fiber particles and their network. The dominant forces acting on a single bed particle are considered to develop the model. Furthermore, to enhance the precision of the model, recently developed hydraulic correlations are used to compute the average bed shear stress, which is required to determine the CTV. In horizontal and highly deviated wells, the wellbore geometry is often eccentric, resulting in the formation of flow stagnant zones that are difficult to clean. The bed shear stress in these zones is sensitive to the bed thickness. The existing wellbore cleanout models do not account for the variation in bed shear stress. Thus, their accuracy is limited when stagnant zones are formed. The new model addresses this problem by incorporating hydraulic correlations to account for bed shear stress variation with bed height. The accuracy of the new model is validated with published measurements and compared with the precision of an existing model. The use of fiber drag and bed shear stress correlations has improved model accuracy and aided in capturing the contribution of fiber in improving wellbore cleanout. As a result, for fibrous and conventional water-based fluids, the predictions of the new model have demonstrated good agreement with experimental measurements and provided better predictions than the existing model. Model predictions show a noticeable reduction in fluid circulation rate caused by the addition of a small quantity of fiber (0.04% w/w) in the fluid. In addition, results show that the existing model overpredicts the cleaning performance of both conventional and fibrous water-basedmuds.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1945 ◽  
Author(s):  
Salem Basfar ◽  
Abdelmjeed Mohamed ◽  
Salaheldin Elkatatny ◽  
Abdulaziz Al-Majed

Barite sag is a serious problem encountered while drilling high-pressure/high-temperature (HPHT) wells. It occurs when barite particles separate from the base fluid leading to variations in drilling fluid density that may cause a serious well control issue. However, it occurs in vertical and inclined wells under both static and dynamic conditions. This study introduces a combined barite–ilmenite weighting material to prevent the barite sag problem in water-based drilling fluid. Different drilling fluid samples were prepared by adding different percentages of ilmenite (25, 50, and 75 wt.% from the total weight of the weighting agent) to the base drilling fluid (barite-weighted). Sag tendency of the drilling fluid samples was evaluated under static and dynamic conditions to determine the optimum concentration of ilmenite which was required to prevent the sag issue. A static sag test was conducted under both vertical and inclined conditions. The effect of adding ilmenite to the drilling fluid was evaluated by measuring fluid density and pH at room temperature, and rheological properties at 120 °F and 250 °F. Moreover, a filtration test was performed at 250 °F to study the impact of adding ilmenite on the drilling fluid filtration performance and sealing properties of the formed filter cake. The results of this study showed that adding ilmenite to barite-weighted drilling fluid increased fluid density and slightly reduced the pH within the acceptable pH range (9–11). Ilmenite maintained the rheology of the drilling fluid with a minimal drop in rheological properties due to the HPHT conditions, while a significant drop was observed for the base fluid (without ilmenite). Adding ilmenite to the base drilling fluid significantly reduced sag factor and 50 wt.% ilmenite was adequate to prevent solids sag in both dynamic and static conditions with sag factors of 0.33 and 0.51, respectively. Moreover, HPHT filtration results showed that adding ilmenite had no impact on filtration performance of the drilling fluid. The findings of this study show that the combined barite–ilmenite weighting material can be a good solution to prevent solids sag issues in water-based fluids; thus, drilling HPHT wells with such fluids would be safe and effective.


Author(s):  
Harish Babu D ◽  
Venkateswarlu B ◽  
Sarojamma G ◽  
Satya Narayana P.V.

Abstract Significance of the study: Hybrid nanofluids attract the attention of many current researchers due to the enhanced heat transport rate in many engineering and industrial applications. The influence of an inclined magnetic field over an exponentially stretched sheet in the presence of thermal radiation cannot be ignored and the literature available in this domain is scanty. The novelty of this communication is to explore the impact of inclined magnetic field and thermal radiative heat on the hybrid nanofluid consisting of and nanoparticles in the base fluid, water. Aim of the study: A mathematical model for hybrid nanofluid is proposed to study the influence of oblique magnetic field and thermal radiation on an exponentially elongated sheet. A comparision of the thermal characteristics of the hybrid nanofluid and the mono nanofluids is made. Research methodology: The governing flow equations are transformed into a system of ODEs with the assistance of similarity variables and are then computationally addressed using bvp4c.The graphs are displayed for velocity, heat measure and reduced frictional coefficients for selected flow parameters. Results: Hybrid nanofluid has 1-4 % growth in the rate of heat transfer when compared to mono nanofluid while it is 1-4.5% in comparison to viscous fluid for increasing radiation parameter. Conclusion: The outcomes of this work revealed that the heat transfer as a consequence of the dispersion of dual nanomaterials is more promising than the mono nanofluid. To accomplish very effective cooling/ heating in industrial and engineering applications, hybrid nanofluids can substitute mono nanofluids.


2018 ◽  
Vol 8 (9) ◽  
pp. 1549 ◽  
Author(s):  
Fitnat Saba ◽  
Naveed Ahmed ◽  
Umar Khan ◽  
Asif Waheed ◽  
Muhammad Rafiq ◽  
...  

An innovative concept of water-based Cu–Al2O3 hybrid nanofluid has been employed to investigate the behavior of flow and heat transfer inside a rectangular channel whose permeable walls experiences dilation or contraction in height. The transformed set of ordinary differential equations is then solved by a well-known Runge–Kutta–Fehlberg algorithm. The analysis also includes three different shapes of copper nanocomposites, namely, platelet, cylinder and brick- shaped. The impact of various embedded parameters on the flow and heat transfer distributions have been demonstrated through the graphs. All the flow properties, temperature profile and rate of heat transfer at the walls are greatly influenced by the presence of copper nanoparticles. Furthermore, it was observed that the platelet shaped nanocomposites provide a better heat transfer ability as compared to the other shapes of nanoparticles.


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985677 ◽  
Author(s):  
Taza Gul ◽  
Waqas Noman ◽  
Muhammad Sohail ◽  
Muhammad Altaf Khan

The low thermal efficiency of the base liquids is the main issue among the researchers and to resolve this issue, scientists use the small-sized (1–100 nm) metal solid particles in the base liquids to increase the thermal efficiency of the base solvents. In the recent article, a theoretical study has been carried out for the thermal application functioning of graphene-oxide-water-based and graphene-oxide-ethylene-glycol-based nanofluids under the impact of the Marangoni convection. The nanofluid flow is also subjected to thermal radiation and magnetic field. The problem has been solved through optimal homotopy analysis method. The impacts of the embedded parameters over the velocity and temperature pitches have been analysed. Due to strong thermophysical properties of graphene-oxide-ethylene-glycol-based nanofluid, it is observed that the heat transfer rate of this sort of nanofluid is more efficient as compared to the graphene-oxide-water-based nanofluids. All the obtained outputs have been presented graphically and numerically.


Sign in / Sign up

Export Citation Format

Share Document