scholarly journals Chitosan Films Incorporated with Exopolysaccharides from Deep Seawater Alteromonas sp.

Marine Drugs ◽  
2020 ◽  
Vol 18 (9) ◽  
pp. 447
Author(s):  
Iratxe Zarandona ◽  
Mónica Estupiñán ◽  
Carla Pérez ◽  
Laura Alonso-Sáez ◽  
Pedro Guerrero ◽  
...  

Two Alteromonas sp. strains isolated from deep seawater were grown to promote the production of exopolysaccharides (EPS, E611 and E805), which were incorporated into chitosan solutions to develop films. The combination of the major marine polysaccharides (chitosan and the isolated bacterial EPS) resulted in the formation of homogenous, transparent, colorless films, suggesting good compatibility between the two components of the film-forming formulation. With regards to optical properties, the films showed low values of gloss, in the range of 5–10 GU, indicating the formation of non-glossy and rough surfaces. In addition to the film surface, both showed hydrophobic character, with water contact angles higher than 100 º, regardless of EPS addition. Among the two EPS under analysis, chitosan films with E805 showed better mechanical performance, leading to resistant, flexible, easy to handle films.

Author(s):  
Grégoire David ◽  
Laurent Heux ◽  
Stéphanie Pradeau ◽  
Nathalie Gontard ◽  
Hélène Angellier-Coussy

Abstract This paper aims at investigating the potential of vine shoots (ViSh) upcycling as fillers in novel poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHBV) based biocomposites. ViSh particles of around 50 µm (apparent median diameter) were obtained combining dry grinding processes, and mixed with PHBV using melt extrusion. Thermal stability and elongation at break of biocomposites were reduced with increasing contents of ViSh particles (10, 20 and 30 wt%), while Young’s modulus and water vapor permeability were increased. It was shown that a surface gas-phase esterification allowed to significantly increase the hydrophobicity of ViSh particles (increase of water contact angles from 59° to 114°), leading to a reduction of 27% in the water vapor permeability of the biocomposite filled with 30 wt% of ViSh. The overall mechanical performance was not impacted by gas-phase esterification, demonstrating that the interfacial adhesion between the virgin ViSh particles and the PHBV matrix was already good and that such filler surface treatment was not required in that case. It was concluded that ViSh particles can be interestingly used as low cost fillers in PHBV-based biocomposites to decrease the overall cost of materials.


2009 ◽  
Vol 79-82 ◽  
pp. 1451-1454 ◽  
Author(s):  
Zhi Qiu Zhang ◽  
Wen Fang Yang ◽  
Zhen Ya Gu ◽  
Rui Ting Huo

Lotus effect is well-known to be governed by chemical properties and nanotextures of the surfaces. In this paper, a method with two-steps treatment technology was applied to develop the superhydrophobic polyvinylidene fruoride(PVDF) membrane with the property of anti-contamination and self-cleaning. First, the PVDF membrane was treated by oxygen plasma so as to get the reactive groups. Second, this film was deposited by perfluoroalkylethyl acrylate precursor/Ar gas via plasma-enhanced chemical vapor deposition (PECVD). The modified film surface exhibited ultra water-repellent ability, showing that the water contact angles was larger than 150 °and the dynamic contact angles was usually lower than 5°.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1236 ◽  
Author(s):  
Elisa Guazzelli ◽  
Giancarlo Galli ◽  
Elisa Martinelli

Diblock copolymers composed of a polystyrene first block and a PEG-fluoroalkyl chain-modified polystyrene second block were synthesized by controlled atom transfer radical polymerization (ATRP), starting from the same polystyrene macroinitiator. The wettability of the polymer film surfaces was investigated by measurements of static and dynamic contact angles. An increase in advancing water contact angle was evident for all the films after immersion in water for short times (10 and 1000 s), consistent with an unusual contraphilic switch of the PEG-fluoroalkyl side chains. Such a contraphilic response also accounted for the retained wettability of the polymer films upon prolonged contact with water, without an anticipated increase in the hydrophilic character. The copolymers were then used as surface-active modifiers of elastomer poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS)-based two-layer films. The elastomeric behavior of the films was varied by using SEBS matrices with different amounts of polystyrene. Whereas the mechanical properties strictly resembled those of the nature of the SEBS matrix, the surface properties were imposed by the additive. The contraphilic switch of the PEG-fluoroalkyl side chains resulted in an exceptionally high enrichment in fluorine of the film surface after immersion in water for seven days.


2013 ◽  
Vol 395-396 ◽  
pp. 351-354
Author(s):  
Qin Huan Yang

Cationic polyfluoroacrylate has been synthesized in the dual presence of cationic and non-ionic emulsifiers. Optimization studies indicated that the optimal proportions of cationic emulsifier 1631 and non-ionic emulsifiers FSA and AEO-9 were 1.75%, 1.25%, and 0.08%, respectively. Under these conditions, the conversion to the polymer was 92.5%, the particle size was 142 nm, and the water contact angle on a polymer film surface was 94.0°. With increasing dosage of hydrocarbon emulsifier, the water contact angles of copolymer films decreased dramatically. The magnitude of this decrease for a polymer with low fluoride content was greater than that for a polymer with high fluoride content. The fluorinated emulsifier FSA behaved similarly to the hydrocarbon emulsifier.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1125 ◽  
Author(s):  
Lulu Liu ◽  
Yuanyuan Gao ◽  
Juan Zhao ◽  
Litong Yuan ◽  
Chenglin Li ◽  
...  

In the paper, poly(ethylene glycol) (PEG) was grafted on the surface of poly(ester-urethane) (SPEU) film with high grafting density for biomedical purposes. The PEG-surface-grafted SPEU (SPEU-PEG) was prepared by a three-step chemical treatment under mild-reaction conditions. Firstly, the SPEU film surface was treated with 1,6-hexanediisocyanate to introduce -NCO groups on the surface with high density (5.28 × 10−7 mol/cm2) by allophanate reaction; subsequently, the -NCO groups attached to SPEU surface were coupled with one of -NH2 groups of tris(2-aminoethyl)amine via condensation reaction to immobilize -NH2 on the surface; finally, PEG with different molecular weight was grafted on the SPEU surface through Michael addition between terminal C = C bond of monoallyloxy PEG and -NH2 group on the film surface. The chemical structure and modified surface were characterized by FT-IR, 1H NMR, X-ray photoelectron spectroscopy (XPS), and water contact angle. The SPEU-PEGs displaying much lower water contact angles (23.9–21.8°) than SPEU (80.5°) indicated that the hydrophilic PEG chains improved the surface hydrophilicity significantly. The SPEU-PEG films possessed outstanding mechanical properties with strain at break of 866–884% and ultimate stress of 35.5–36.4 MPa, which were slightly lower than those of parent film, verifying that the chemical treatments had minimum deterioration on the mechanical properties of the substrate. The bovine serum albumin adsorption and platelet adhesion tests revealed that SPEU-PEGs had improved resistance to protein adsorption (3.02–2.78 μg/cm2) and possessed good resistance to platelet adhesion (781–697 per mm2), indicating good surface hemocompatibility. In addition, due to the high grafting density, the molecular weight of surface-grafted PEG had marginal effect on the surface hydrophilicity and hemocompatibility.


2007 ◽  
Vol 342-343 ◽  
pp. 249-252 ◽  
Author(s):  
Young Gwang Ko ◽  
Hyeon Ae Jeon ◽  
Kwan Han Yoon ◽  
Young Chul Kim ◽  
Chang Hyun Ahn ◽  
...  

PHBV ultrafine fibers were fabricated by electrospinning process. Electrospun PHBV fiber structures revealed randomly aligned fibers with average diameter of 400 nm. PIPAAm was grafted on the surface of PHBV nanofibrous mat by electron beam irradiation. PIPAAm-grafted PHBV mats were determined by ATR-FTIR and ESCA. Water contact angles were determined by a sessile drop method at 20 and 37. To examine the tissue compatibility, human fibroblasts were evenly seeded onto PIPAAm-grafted PHBV mat and cast film, ungrafted PHBV mat and film. Attached and spread fibroblasts on nanofibrous mat were proliferated more rapidly than that of flat film surface. Initial cell attachment on PIPAAm-grafted surfaces was higher than ungrafted surfaces. The surface property changed to hydrophilic by PIPAAm graft, which increased initial cell attachment. Detachment of single cells from PIPAAm-grafted PHBV matrixes was measured by low temperature treatment after incubation at 37. Cultured cells were rapidly detached from PIPAAm-grafted PHBV mat compared with film. With porous mats, the water molecules easily reach to grafted PIPAAm from underneath and peripheral to the attached cells, resulting in rapid hydration of grafted PIPAAm molecules and detachment of the cells.


2011 ◽  
Vol 117-119 ◽  
pp. 1199-1202
Author(s):  
Yong Zhang ◽  
Xiu Fang Wen ◽  
Pi Hui Pi ◽  
Da Feng Zheng ◽  
Zhi Qi Cai ◽  
...  

The relationships between (meth)acrylate polymers structure and its film surface wettability were analyzed. A series of random (meth)acrylate polymers were prepared by the free radical solution polymerization and their coating film wettability was analyzed by measuring water contact angles(CAs). There are three kinds of functional groups on the surface, including methyl, ethyl and ester group, and the surface energy of ester group is greater than the others. The more ester group on the surface will result in the better surface hydrophilicity. Polymer structure parameters as the side chain length(m) and glass temperature(Tg) are taken into account in discussing the migration of functional group to the outermost surface. It was found that the less m and lower Tg will promote the motion of the side chain and hence cause the surface exhibiting more hydrophilicity.


1983 ◽  
Vol 44 (C10) ◽  
pp. C10-363-C10-366 ◽  
Author(s):  
J. Vlieger ◽  
M. M. Wind

Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1263
Author(s):  
Liyun Xu ◽  
Yu Zhang ◽  
Ying Guo ◽  
Ruiyun Zhang ◽  
Jianjun Shi ◽  
...  

In order to obtain stable superhydrophobicity, suitable hydrophobic treatment agents should be selected according to different material properties. In this paper, cotton and poly(ethylene terephthalate) (PET) fabrics were respectively coated with dodecyl methacrylate (LMA) via argon combined capacitively coupled plasma (CCP), and the surface hydrophobicity and durability of the treated cotton and polyester fabrics are also discussed. An interesting phenomenon happened, whereby the LMA-coated cotton fabric (Cotton-g-LMA) had better water repelling and mechanical durability properties than LMA-coated PET fabric (PET-g-LMA), and LMA-coated hydroxyl-grafted PET fabrics (PET fabrics were successively coated with polyethylene glycol (PEG) and LMA, PET-g-PEG & LMA) had a similar performance to cotton fabrics. The water contact angles of Cotton-g-LMA, PET-g-LMA and PET-g-PEG & LMA were 156°, 153° and 155°, respectively, and after 45 washing cycles or 1000 rubbing cycles, the corresponding water contact angles decreased to 145°, 88°, 134° and 146°, 127° and 143°, respectively. Additionally, thermoplastic polyurethane (TPU) and polyamides-6 (PA6) fabrics all exhibited the same properties as the PET fabric. Therefore, the grafting of hydroxyl can improve the hydrophobic effect of LMA coating and the binding property between LMA and fabrics effectively, without changing the wearing comfort.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3950
Author(s):  
Abeer Alassod ◽  
Syed Rashedul Islam ◽  
Mina Shahriari Khalaji ◽  
Rogers Tusiime ◽  
Wanzhen Huang ◽  
...  

Compositing is an interesting strategy that has always been employed to introduce or enhance desired functionalities in material systems. In this paper, sponges containing polypropylene, lignin, and octavinyl-polyhedral oligomeric silsesquioxane (OV-POSS) were successfully prepared via an easy and elegant strategy called thermally induced phase separation (TIPS). To fully explore the behaviour of different components of prepared sponges, properties were characterized by a thermogravimetric analyser (TGA), differential scanning calorimetry (DSC), Fourier transform infrared measurement (FTIR), and scanning electron microscopy (SEM). Furthermore, wettability properties toward an organic liquid and oil were investigated. The FTIR analysis confirmed the chemical modification of the components. TGA and DSC measurements revealed thermal stability was much better with an increase in OV-POSS content. OV-POSS modified sponges exhibited ultra-hydrophobicity and high oleophilicity with water contact angles of more than 125°. The SEM revealed that POSS molecules acted as a support for reduced surface roughness. Moreover, OV-POSS-based blend sponges showed higher sorption capacities compared with other blend sponges without OV-POSS. The new blend sponges demonstrated a potential for use as sorbent engineering materials in water remediation.


Sign in / Sign up

Export Citation Format

Share Document