scholarly journals Influence of Cultivation Conditions on the Sioxanthin Content and Antioxidative Protection Effect of a Crude Extract from the Vegetative Mycelium of Salinispora tropica

Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 509
Author(s):  
Zuzana Jezkova ◽  
Vera Schulzova ◽  
Ivana Krizova ◽  
Marcel Karabin ◽  
Tomas Branyik

Due to their bioavailability, glycosylated carotenoids may have interesting biological effects. Sioxanthin, as a representative of this type of carotenoid, has been identified in marine actinomycetes of the genus Salinispora. This study evaluates, for the first time, the effect of cultivation temperature (T) and light intensity (LI) on the total cellular carotenoid content (TC), antioxidant activity (AA) and sioxanthin content (SX) of a crude extract (CE) from Salinispora tropica biomass in its vegetative state. Treatment-related differences in TC and SX values were statistically significantly and positively affected by T and LI, while AA was most significantly affected by T. In the S. tropica CE, TC correlated well (R2 = 0.823) with SX and somewhat less with AA (R2 = 0.777). A correlation between AA and SX was found to be less significant (R2 = 0.731). The most significant protective effect against oxidative stress was identified in the CE extracted from S. tropica biomass grown at the highest T and LI (CE-C), as was demonstrated using LNCaP and KYSE-30 human cell lines. The CE showed no cytotoxicity against LNCaP and KYSE-30 cell lines.

Author(s):  
Érica Barizão ◽  
Joana Boeing ◽  
Eliza Rotta ◽  
Hélito Volpato ◽  
Celso Nakamura ◽  
...  

Dipteryx alata Vogel is a native fruit from Brazil, which has been poorly investigated concerning its phenolic composition and the biological effects of its pulp + peel. Thus, in this study we evaluated the antioxidant activity and total phenolic content of the D. alata pulp + peel extracts obtained with different solvents, as well as determined the phenolic compounds by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis. In addition, cytotoxic effects of D. alata pulp + peel extract on non-tumor and cancer cell lines were investigated for the first time. The results showed that phenolic compounds can be efficiently extracted from pulp + peel of D. alata by organic solvent-water mixtures as an extraction system. The developed UHPLC-MS/MS method allowed the quantification of eighteen phenolic compounds in D. alata pulp + peel extract for the first time, which luteolin and trans-cinnamic acid were predominant. In addition, D. alata pulp + peel extract exhibited better cytotoxity against SiHa and C33A cervical cancer cell lines, while weak cytotoxicity was noticed against non-tumor HaCaT and L929 cell lines, pointing out its safety and providing preliminary evidence of its anticancer potential. Our findings indicate that D. alata pulp + peel can be explored as a natural source of phenolic compounds with promising antioxidant and cytotoxic properties.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2202 ◽  
Author(s):  
Loris Bertazza ◽  
Susi Barollo ◽  
Maria Elena Mari ◽  
Irene Faccio ◽  
Maira Zorzan ◽  
...  

Background: Curcumin has numerous properties and is used in many preclinical conditions, including cancer. It has low bioavailability, while its derivative EF24 shows enhanced solubility. However, its effects have never been explored in adrenocortical tumor cell models. The efficacy of EF24 alone or combined with mitotane (reference drug for adrenocortical cancer) was evaluated in two adrenocortical tumor cell lines, SW13 and H295R. Method and Results: EF24 reduced cell viability with an IC50 (half maximal inhibitory concentration) of 6.5 ± 2.4 μM and 4.9 ± 2.8 μM for SW13 and H295R cells, respectively. Combination index (EF24 associated with mitotane) suggested an additivity effect in both cell lines. Cell cycle analysis revealed an increase in subG0/G1 phase, while motility assay showed a decrease in migratory cell capacity, and similarly, clonogenic assay indicated that EF24 could reduce colony numbers. Furthermore, Wnt/β-catenin, NF-κB, MAPK, and PI3k/Akt pathways were modulated by Western blot analysis when treating cells with EF24 alone or combined with mitotane. In addition, intracellular reactive oxygen species levels increased in both cell lines. Conclusion: This work analyzed EF24 in adrenocortical tumor cell lines for the first time. These results suggest that EF24 could potentially impact on adrenocortical tumors, laying the foundation for further research in animal models.


2020 ◽  
Vol 17 (3) ◽  
pp. 206-210
Author(s):  
Ty Viet Pham ◽  
Thang Quoc Le ◽  
Anh Tuan Le ◽  
Hung Quoc Vo ◽  
Duc Viet Ho

A phytochemical investigation of the leaves of Annona reticulata led to the isolation and structural determination of β-sitosterol (1), ent-pimara-8(14),15-dien-19-oic acid (2), ent-pimara- 8(14),15-dien-19-ol (3), quercetin (4), quercetin 3-O-α-L-arabinopyranoside (5), and a mixture of quercetin 3-O-β-D-galactopyranoside (6a) and quercetin 3-O-β-D-glucopyranoside (6b). Of these, compounds 2 and 3 were isolated from the genus Annona for the first time. Compound 3 showed strong cytotoxicity against SK-LU-1 and SW626 cell lines with IC50 values of 17.64 ± 1.07 and 19.79 ± 1.41 μg mL-1, respectively.


2019 ◽  
Vol 18 (10) ◽  
pp. 1405-1416 ◽  
Author(s):  
Isabel C.V. da Silva ◽  
Goran N. Kaluđerović ◽  
Pollyana F. de Oliveira ◽  
Denise O. Guimarães ◽  
Carla H. Quaresma ◽  
...  

Background: P. mucronata (Pm) comes from South America, Brazil and is characterized as “Maracujá de Restinga”. It is used in folk medicine for its soothing properties and in treating insomnia. Objective: The present study for the first time analyzed the antioxidant and cytotoxicity of the hydroalcoholic leaves extract and fractions from Pm. Method: The cytotoxicity test will be evaluated by different assays (MTT and CV) against human prostate cancer (PC3) and mouse malignant melanoma (B16F10) cell lines, and the antioxidant test by DPPH method. Results: β-Amyrin, oleanolic acid, β-sitosterol and stigmasterol were isolated of the most active, hexane fraction. These substances were tested against the tumor cell lines: β-sitosterol and stigmasterol showed the most relevant activity to PC3 in CV assay and, oleanolic acid to B16F10 by the MTT assay. In addition, it was possible to indicate that the mode of cell death for stigmasterol, presumably is apoptosis. In terms of antioxidant activity, the hydroalcoholic leaves extract presented higher activity (EC50 133.3 µg/mL) compared to the flower (EC50 152.3 µg/mL) and fruit (EC50 207.9 µg/mL) extracts. By the HPLC-MS, it was possible to identify the presence of flavones in the leaf extract (isoschaftoside, schaftoside, isovitexin, vitexin, isoorientin, orientin). Conclusions: P. mucronata hexane fraction showed promising cytotoxic effect against cancer cell lines, and stigmasterol contributes to this activity, inducing apoptosis of these cells. Furthermore, as other Passiflora species, Pm extract showed antioxidant activity and flavones are its major phenolic compounds.


1990 ◽  
Vol 18 (1_part_1) ◽  
pp. 243-250
Author(s):  
Dag Jenssen ◽  
Lennart Romert

To understand the cause of the biological effects of xenobiotic metabolism in mammals, investigators have traditionally performed animal experiments by comparing the results of biochemical methods, such as measurement of enzyme activity analysis of the metabolites produced, with the observed toxicological effect. This article deals with in vitro methods for genotoxicity combined with drug metabolising preparations at the organelle, cell or organ levels, as exemplified by microsome preparations, isolated cells/cell lines and organ perfusion systems, respectively. The advantage of some of these methods for studying metabolism-mediated mutagenicity is that the measured endpoint reflects not only the bioactivating phase I reactions, but also the detoxifying phase II reactions, and the transfer of the non-conjugated reactive metabolites to other cells and their ability to cause mutations in these cells. In vivo, all these events are important factors in the initiation of cancer. A mechanistic advantage of the methods for metabolism-mediated mutagenicity in vitro is that the relevance of the different steps in metabolism for the mutational events can seldom be investigated in an in vivo assay. Furthermore, human studies can easily be performed using the co-culture technique with isolated human cells or cell lines.


2021 ◽  
Vol 22 (14) ◽  
pp. 7631
Author(s):  
Lisa Wolff ◽  
Siva Sankar Murthy Bandaru ◽  
Elias Eger ◽  
Hoai-Nhi Lam ◽  
Martin Napierkowski ◽  
...  

Pentathiepins are polysulfur-containing compounds that exert antiproliferative and cytotoxic activity in cancer cells, induce oxidative stress and apoptosis, and inhibit glutathione peroxidase (GPx1). This renders them promising candidates for anticancer drug development. However, the biological effects and how they intertwine have not yet been systematically assessed in diverse cancer cell lines. In this study, six novel pentathiepins were synthesized to suit particular requirements such as fluorescent properties or improved water solubility. Structural elucidation by X-ray crystallography was successful for three derivatives. All six underwent extensive biological evaluation in 14 human cancer cell lines. These studies included investigating the inhibition of GPx1 and cell proliferation, cytotoxicity, and the induction of ROS and DNA strand breaks. Furthermore, selected hallmarks of apoptosis and the impact on cell cycle progression were studied. All six pentathiepins exerted high cytotoxic and antiproliferative activity, while five also strongly inhibited GPx1. There is a clear connection between the potential to provoke oxidative stress and damage to DNA in the form of single- and double-strand breaks. Additionally, these studies support apoptosis but not ferroptosis as the mechanism of cell death in some of the cell lines. As the various pentathiepins give rise to different biological responses, modulation of the biological effects depends on the distinct chemical structures fused to the sulfur ring. This may allow for an optimization of the anticancer activity of pentathiepins in the future.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianyu Wang ◽  
Doudou Liu ◽  
Zhiwei Sun ◽  
Ting Ye ◽  
Jingyuan Li ◽  
...  

AbstractIt has been postulated that cancer stem cells (CSCs) are involved in all aspects of human cancer, although the mechanisms governing the regulation of CSC self-renewal in the cancer state remain poorly defined. In the literature, both the pro- and anti-oncogenic activities of autophagy have been demonstrated and are context-dependent. Mounting evidence has shown augmentation of CSC stemness by autophagy, yet mechanistic characterization and understanding are lacking. In the present study, by generating stable human lung CSC cell lines with the wild-type TP53 (A549), as well as cell lines in which TP53 was deleted (H1229), we show, for the first time, that autophagy augments the stemness of lung CSCs by degrading ubiquitinated p53. Furthermore, Zeb1 is required for TP53 regulation of CSC self-renewal. Moreover, TCGA data mining and analysis show that Atg5 and Zeb1 are poor prognostic markers of lung cancer. In summary, this study has elucidated a new CSC-based mechanism underlying the oncogenic activity of autophagy and the tumor suppressor activity of p53 in cancer, i.e., CSCs can exploit the autophagy-p53-Zeb1 axis for self-renewal, oncogenesis, and progression.


2018 ◽  
Vol 400 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Sybille Hasse ◽  
Marie-Christine Müller ◽  
Karin Uta Schallreuter ◽  
Thomas von Woedtke

Abstract Skin color is derived from epidermal melanocytes that contain specialized organelles in which melanin is formed. The formation of melanin is a well-orchestrated process, and reactive oxygen species (ROS) play a role in numerous enzymatic conversions, such as the reactions catalyzed by tyrosinase and tyrosine hydroxylase. Currently, there is ample evidence that cold plasma exerts biological effects on cells through the impact of ROS and reactive nitrogen species (RNS). Modulation of melanin biosynthesis by cold plasma has not yet been investigated. This study investigated melanin biosynthesis of human melanoma cell lines with different endogenous melanin contents (SK-Mel 28, G-361, FM-55-P and MNT-1) in response to cold plasma-derived reactive species. Initially, the distribution of melanosomes, via immunofluorescence, and the influence of microphthalmia-associated transcription factor (MiTF), as a key transcription factor, was investigated. In our experimental setup, all of the tested cell lines had an elevated melanin content after exposure to cold plasma. These promising results suggest a novel potential application of cold plasma for the regulation of melanogenesis and may be a useful tool for influencing skin color in the future.


1995 ◽  
Vol 146 (4) ◽  
pp. 503-507 ◽  
Author(s):  
P. Betry ◽  
M.A. Fliniaux ◽  
M. Mackova ◽  
F. Gillet ◽  
T. Macek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document