scholarly journals 3D Patient-Specific Virtual Models for Presurgical Planning in Patients with Recto-Sigmoid Endometriosis Nodules: A Pilot Study

Medicina ◽  
2022 ◽  
Vol 58 (1) ◽  
pp. 86
Author(s):  
Giulia Borghese ◽  
Francesca Coppola ◽  
Diego Raimondo ◽  
Antonio Raffone ◽  
Antonio Travaglino ◽  
...  

Background and Objective: In recent years, 3D printing has been used to support surgical planning or to guide intraoperative procedures in various surgical specialties. An improvement in surgical planning for recto-sigmoid endometriosis (RSE) excision might reduce the high complication rate related to this challenging surgery. The aim of this study was to build novel presurgical 3D models of RSE nodules from magnetic resonance imaging (MRI) and compare them with intraoperative findings. Materials and Methods: A single-center, observational, prospective, cohort, pilot study was performed by enrolling consecutive symptomatic women scheduled for minimally invasive surgery for RSE between November 2019 and June 2020 at our institution. Preoperative MRI were used for building 3D models of RSE nodules and surrounding pelvic organs. 3D models were examined during multi-disciplinary preoperative planning, focusing especially on three domains: degree of bowel stenosis, nodule’s circumferential extension, and bowel angulation induced by the RSE nodule. After surgery, the surgeon was asked to subjectively evaluate the correlation of the 3D model with the intra-operative findings and to express his evaluation as “no correlation”, “low correlation”, or “high correlation” referring to the three described domains. Results: seven women were enrolled and 3D anatomical virtual models of RSE nodules and surrounding pelvic organs were generated. In all cases, surgeons reported a subjective “high correlation” with the surgical findings. Conclusion: Presurgical 3D models could be a feasible and useful tool to support surgical planning in women with recto-sigmoidal endometriotic involvement, appearing closely related to intraoperative findings.

2020 ◽  
Vol 7 (1) ◽  
pp. 7 ◽  
Author(s):  
Elisa Mussi ◽  
Federico Mussa ◽  
Chiara Santarelli ◽  
Mirko Scagnet ◽  
Francesca Uccheddu ◽  
...  

In brain tumor surgery, an appropriate and careful surgical planning process is crucial for surgeons and can determine the success or failure of the surgery. A deep comprehension of spatial relationships between tumor borders and surrounding healthy tissues enables accurate surgical planning that leads to the identification of the optimal and patient-specific surgical strategy. A physical replica of the region of interest is a valuable aid for preoperative planning and simulation, allowing the physician to directly handle the patient’s anatomy and easily study the volumes involved in the surgery. In the literature, different anatomical models, produced with 3D technologies, are reported and several methodologies were proposed. Many of them share the idea that the employment of 3D printing technologies to produce anatomical models can be introduced into standard clinical practice since 3D printing is now considered to be a mature technology. Therefore, the main aim of the paper is to take into account the literature best practices and to describe the current workflow and methodology used to standardize the pre-operative virtual and physical simulation in neurosurgery. The main aim is also to introduce these practices and standards to neurosurgeons and clinical engineers interested in learning and implementing cost-effective in-house preoperative surgical planning processes. To assess the validity of the proposed scheme, four clinical cases of preoperative planning of brain cancer surgery are reported and discussed. Our preliminary results showed that the proposed methodology can be applied effectively in the neurosurgical clinical practice both in terms of affordability and in terms of simulation realism and efficacy.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Anna Di Laura ◽  
Johann Henckel ◽  
Harry Hothi ◽  
Alister Hart

Abstract Background Modern designs of joint replacements require a large inventory of components to be available during surgery. Pre-operative CT imaging aids 3D surgical planning and implant sizing, which should reduce the inventory size and enhance clinical outcome. We aimed to better understand the impact of the use of 3D surgical planning and Patient Specific Instrumentation (PSI) on hip implant inventory. Methods An initial feasibility study of 25 consecutive cases was undertaken to assess the discrepancy between the planned component sizes and those implanted to determine whether it was possible to reduce the inventory for future cases. Following this, we performed a pilot study to investigate the effect of an optimized inventory stock on the surgical outcome: we compared a group of 20 consecutive cases (experimental) with the 25 cases in the feasibility study (control). We assessed: (1) accuracy of the 3D planning system in predicting size (%); (2) inventory size changes (%); (3) intra and post-operative complications. Results The feasibility study showed variability within 1 size range, enabling us to safely optimize inventory stock for the pilot study. (1) 3D surgical planning correctly predicted sizes in 93% of the femoral and 89% of the acetabular cup components; (2) there was a 61% reduction in the implant inventory size; (3) we recorded good surgical outcomes with no difference between the 2 groups, and all patients had appropriately sized implants. Conclusions 3D planning is accurate in up to 95% of the cases. CT-based planning can reduce inventory size in the hospital setting potentially leading to a reduction in costs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Michael Jiang ◽  
Jasamine Coles-Black ◽  
Gordon Chen ◽  
Matthew Alexander ◽  
Jason Chuen ◽  
...  

Introduction: Surgical planning for complex total hip arthroplasty (THA) often presents a challenge. Definitive plans can be difficult to decide upon, requiring unnecessary equipment to be ordered and a long theatre list booked. We present a pilot study utilising patient-specific 3D printed models as a method of streamlining the pre-operative planning process.Methods: Complex patients presenting for THA were referred to the research team. Patient-specific 3D models were created from routine Computed Tomography (CT) imaging. Simulated surgery was performed to guide prosthesis selection, sizing and the surgical plan.Results: Seven patients were referred for this pilot study, presenting with complex conditions with atypical anatomy. Surgical plans provided by the 3D models were more detailed and accurate when compared to 2D CT and X ray imaging. Streamlined equipment selection was of great benefit, with augments avoided post simulation in three cases. The ability to tackle complex surgical problems outside of the operating theatre also flagged potential complications, while also providing teaching opportunities in a low risk environment.Conclusion: This study demonstrated that 3D printed models can improve the surgical plan and streamline operative logistics. Further studies investigating the optimal 3D printing material and workflow, along with cost-benefit analyses are required before this process is ready for routine use.


F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 1603
Author(s):  
Jagannadha Avasarala ◽  
Todd Pietila

Conventional magnetic resonance imaging (MRI) studies depict disease of the human brain in 2D but the reconstruction of a patient’s brain stricken with multiple sclerosis (MS) in 3D using 2D images has not been attempted.  Using 3D reconstruction algorithms, we built a 3D printed patient-specific brain model to scale. It is a first of its kind model that depicts the total white matter lesion (WML) load using T2 FLAIR images in an MS patient. The patient’s images in Digital Imaging and Communications in Medicine (DICOM) format were imported into Mimics inPrint 2.0 (Materialise NV, Leuven, Belgium) a dedicated medical image processing software designed for the purposes of image segmentation and 3D modeling.  The imported axial images were automatically formatted to display coronal and sagittal slices within the software. The imaging data were then segmented into regions and surface rendering was done to achieve 3D virtual printable files of the desired structures of interest. Rendering brain tumor(s) in 3D has been attempted with the specific intent of extending the options available to a surgeon but no study to our knowledge has attempted to quantify brain disease in MS that has, for all practical purposes, no surgical options. The purpose of our study was to demonstrate that 3D depiction of chronic neurological diseases is possible in a printable model while serving a fundamental need for patient education. Medical teaching is moored in 2D graphics and it is time to evolve into 3D models that can be life-like and deliver instant impact.


2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 363-363
Author(s):  
E. Reilly Scott ◽  
Samuel Morano ◽  
Andrea Quinn ◽  
Erica Mann ◽  
Michelle Ho ◽  
...  

363 Background: 3D printing is a growing tool in surgical education due to the ability to visualize organs, tissue, and masses from multiple angles before operating on a patient. Previous studies using highly detailed and expensive 3D models costing between $1,000-250 per model have been shown to enhance patient and trainee comprehension of tumor characteristics, goals of surgery, and planned surgical procedure for partial nephrectomies. In our study we aim to use simpler and less expensive models in a greater range of patients receiving partial nephrectomies to determine the use of 3D models in patient, resident, and fellow education. Methods: 3D models of the effected kidney, mass, renal artery, and renal vein were created using preoperative imaging of undergoing partial nephrectomies at Thomas Jefferson University Hospital (TJUH) costing $35 per model. Residents and fellows filled out 3 surveys assessing their surgical plan and their confidence in the chosen plan at 3 time points: 1) Before seeing the model, 2) After seeing the model before surgery, and 3) After surgery. Ten patients filled out 2 surveys about their understanding of the kidney, their disease, the surgery they will undergo, and the risks involved with surgery before and after seeing the model. Results: Based on surveys to assess for surgical plan and confidence given to resident and fellow surgeons before and after seeing the 3D model, confidence significantly increased. Surveys given after surgery assessing anatomic and surgical comprehension found that resident and fellow surgeons rated the helpfulness of the models on their anatomical comprehension 7.6 out of 10 and the help of the models on their surgical confidence 7 out of 10. Patient understanding of their kidney, disease, and surgery significantly increased after seeing the 3D model, but the risks associated with surgery did not significantly increase. The extent that the model helped the patients learn about the kidney, their disease, the surgery, and the risks related to surgery were rated an average of 8.33, 9.67, 9.5, and 8.83 out of 10, respectively. Conclusions: Patient-specific 3D models for partial nephrectomies increase resident and fellow confidence in surgical approach and helped patients learn about their disease and feel comfortable going into surgery. Thus, it is important to continue to explore 3D models as an educational tool for both trainees and patients and potentially include 3D models as part of the standard of care. Further research could continue to explore the utility of 3D models as a pre-operative educational tool for both patients and trainees in other surgical fields.


2019 ◽  
Vol 97 (4) ◽  
pp. 277-286 ◽  
Author(s):  
Kaley H. Garner ◽  
Dinender K. Singla

Cardiovascular disease resulting from atypical cardiac structures continues to be a leading health concern despite advancements in diagnostic imaging and surgical techniques. However, the ability to visualize spatial relationships using current technologies remains a challenge. Therefore, 3D modeling has gained significant interest to understand complex and atypical cardiovascular disorders. Moreover, 3D modeling can be personalized and patient-specific. 3D models have been demonstrated to aid surgical planning and simulation, enhance communication among surgeons and patients, optimize medical device design, and can be used as a potential teaching tool in medical schools. In this review, we discuss the key components needed to generate cardiac 3D models. We highlight prevalent structural conditions that have utilized 3D modeling in pre-operative planning. Furthermore, we discuss the current limitations of routine use of 3D models in the clinic as well as future directions for utilization of this technology in the cardiovascular field.


OTO Open ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 2473974X1880449 ◽  
Author(s):  
Samuel R. Barber ◽  
Kevin Wong ◽  
Vivek Kanumuri ◽  
Ruwan Kiringoda ◽  
Judith Kempfle ◽  
...  

Otolaryngologists increasingly use patient-specific 3-dimensional (3D)–printed anatomic physical models for preoperative planning. However, few reports describe concomitant use with virtual models. Herein, we aim to (1) use a 3D-printed patient-specific physical model with lateral skull base navigation for preoperative planning, (2) review anatomy virtually via augmented reality (AR), and (3) compare physical and virtual models to intraoperative findings in a challenging case of a symptomatic petrous apex cyst. Computed tomography (CT) imaging was manually segmented to generate 3D models. AR facilitated virtual surgical planning. Navigation was then coupled to 3D-printed anatomy to simulate surgery using an endoscopic approach. Intraoperative findings were comparable to simulation. Virtual and physical models adequately addressed details of endoscopic surgery, including avoidance of critical structures. Complex lateral skull base cases may be optimized by surgical planning via 3D-printed simulation with navigation. Future studies will address whether simulation can improve patient outcomes.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Matthijs Fitski ◽  
Jene W. Meulstee ◽  
Annemieke S. Littooij ◽  
Cornelis P. van de Ven ◽  
Alida F. W. van der Steeg ◽  
...  

Purpose. Due to the size and localization of Wilms’ tumor (WT), nephron-sparing surgery (NSS) is only possible in a limited number of cases. When NSS is considered, the surgeon preoperatively requires a thorough understanding of the patient-specific anatomy to prevent positive surgical margins and other complications. Through a collaboration between the radiology and pediatric surgery departments and 3D imaging specialists, a 3D visualization workflow was developed to improve preoperative planning of NSS for WT patients. Methods. The 3D visualization workflow combines a MRA sequence, a segmentation protocol, and augmented reality (AR) visualization, additional to in-house 3D printing. A noncontrast-enhanced MRA scan was added to the MRI protocol. MRI sequences were segmented with a segmentation protocol in an open-source software package. The resulting 3D models were visualized in AR with a HoloLens and 3D print. Results. In a pilot study, five WT patients eligible for NSS were preoperatively planned through the 3D visualization workflow. AR visualization software was fast and free to use and allowed adequate handling of the 3D holograms. The 3D printed models were considered convenient and practical for intraoperative orientation. The patient-friendly, fast, and low-cost 3D visualization workflow was easily implemented and appeared to be valuable for the preparation of NSS. Conclusion. This pilot study demonstrates how a strong collaboration between the pediatric surgery and radiology departments and 3D imaging specialists will help to shape the future of pediatric oncological surgery. This 3D visualization workflow aims to prepare pediatric oncological surgeons for nephron-sparing surgery in patients with Wilms’ tumors.


2021 ◽  
pp. 000348942110240
Author(s):  
Peng You ◽  
Yi-Chun Carol Liu ◽  
Rodrigo C. Silva

Objective: Microtia reconstruction is technically challenging due to the intricate contours of the ear. It is common practice to use a two-dimensional tracing of the patient’s normal ear as a template for the reconstruction of the affected side. Recent advances in three-dimensional (3D) surface scanning and printing have expanded the ability to create surgical models preoperatively. This study aims to describe a simple and affordable process to fabricate patient-specific 3D ear models for use in the operating room. Study design: Applied basic research on a novel 3D optical scanning and fabrication pathway for microtia reconstruction. Setting: Tertiary care university hospital. Methods: Optical surface scanning of the patient’s normal ear was completed using a smartphone with facial recognition capability. The Heges application used the phone’s camera to capture the 3D image. The 3D model was digitally isolated and mirrored using the Meshmixer software and printed with a 3D printer (MonopriceTM Select Mini V2) using polylactic acid filaments. Results: The 3D model of the ear served as a helpful intraoperative reference and an adjunct to the traditional 2D template. Collectively, time for imaging acquisition, editing, and fabrication was approximately 3.5 hours. The upfront cost was around $210, and the recurring cost was approximately $0.35 per ear model. Conclusion: A novel, low-cost approach to fabricate customized 3D models of the ear is introduced. It is feasible to create individualized 3D models using currently available consumer technology. The low barrier to entry raises the possibility for clinicians to incorporate 3D printing into various clinical applications.


2021 ◽  
Vol 108 (Supplement_1) ◽  
Author(s):  
C Ryan ◽  
E O'Malley ◽  
D Sheppard

Abstract Introduction Nephron-sparing surgery is becoming more common as surgical techniques advance. VR and 3D visualisation appear to provide better anatomical understanding in presurgical planning than two-dimensional alone. 3D models may enable greater tissue salvation and fewer complications. 3D model preparation and advancing research is expensive and time consuming. We aim to pilot study led by medical student, create reliable anatomical kidney models and assess usefulness in surgical planning. Method Routine CT urograms were performed on 128 slice scanner using split bolus technique. Medical student segmented and displayed models in VR using 3DSlicer. Radiology registrar and consultant validated models. Two urology surgeons completed qualitative questionnaires. Result We included two patients. Only minor segmentation tweaks by radiologist ensured accurately demonstrated tumors. Tissue contrast quality varied between CT scans complicating segmentation. Both surgeons deemed models helpful in visualising hilar anatomy, predicting bleeding complications, determining laparoscopic/open and partial/full nephrectomy approach. Surgeons prioritised vasculature visualisation over collecting system. Surgeons suggested gauging tumor depth would be useful. Considering 3D printing cost, surgeons agreed VR alone may suffice. Conclusion Surgeons found 3D and VR enabled accurate surgical planning and patient counselling regarding nephrectomy risk. Minor CT protocol recommendations enable easier and more accurate segmentation, without increasing patient's radiation exposure. Annual leave during 8-week summer project reflects case numbers. Since, we've identified more cases to assess surgical parameters against matched cohort. We've begun work for adrenal surgery. It's feasible for medical students with minimal surgical/radiological knowledge to advance this research, gaining valuable experience. Abbrev Virtual Reality(VR), Three-dimensional(3D), Computerised Tomography(CT) Take-home message Three-dimensional imaging and virtual reality may improve surgical planning and patient counselling. Regarding nephrectomy, this could give surgeons the confidence to convert from full nephrectomy to partial nephrectomy approach, improving patient outcome.


Sign in / Sign up

Export Citation Format

Share Document