scholarly journals The Permeability and Selectivity of the Polyamide Reverse Osmosis Membrane were Significantly Enhanced by PhSiCl3

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 142
Author(s):  
Junjie Yu ◽  
Kaifeng Gu ◽  
Binbin Yang ◽  
Kaizhen Wang ◽  
Yong Zhou ◽  
...  

The work briefly introduces the nano-composite reverse osmosis (RO) membrane with more permeability and selective performance, and we adopted the phenyltrichlorosilane precursor with better chemical stability and greater spatial resistance. The phenyltrichlorosilane concentration was mainly discussed in this work. The in-situ hydrolysis of phenyltrichlorosilane and the occurrence of ammonia hydrolysis make it effectively incorporated into the polyamide film. The covalent bond and hydrogen bond of phenyltrichlorosilane and polyamide (PA) can be realized. The phenyl group can extend in the polyamide polymer network and give the film corresponding functions. There will be fewer non-selective defects between phenyltrichlorosilane and PA. Under the premise of maintaining the water-salt selectivity of the membrane, along with the increase of benzene trichlorosilane loading, the 300% pure water flux can be achieved and the desalination rate remains at 98.1–98.9%. This reverse osmosis (RO) is suitable for household water purification.

2019 ◽  
Vol 14 (3) ◽  
pp. 614-624 ◽  
Author(s):  
Godwill Kasongo ◽  
Chad Steenberg ◽  
Bradley Morris ◽  
Gracia Kapenda ◽  
Nurah Jacobs ◽  
...  

Abstract Membrane surface modification is a favourable method to handle fouling during wastewater treatment processes. In this study, grafting of polyvinyl alcohol (PVA) through cross-link with Glutaraldehyde was applied to a thin film composite reverse osmosis membrane to enhance the resistance to flux decline. The analytical analyses attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy were performed to evaluate the impact of surface modification. Biofouling using Escherichia coli (E. coli) bacterial solution and fouling tests using a bench scale reverse osmosis system with a simulated secondary effluent from a membrane bioreactor were used to assess the impact of the surface modification initiated on antifouling properties of the membrane. It was shown that the morphological structure and the chemical properties of the membrane were altered, whereas the pure water flux slightly decreased after modification. Although a slight decrease of salt rejection was observed, the membrane resistance to fouling improved and the biofouling model used revealed the anti-biofouling capacity of the membrane. The flux decline and flux recovery ratios improved with an increase in PVA concentration. The sterilization ratio increased from 33.8 to 36.8% and the pure water flux decline decreased from 46.04 to 25.94% after modification.


Polymer ◽  
2010 ◽  
Vol 51 (15) ◽  
pp. 3472-3485 ◽  
Author(s):  
Bryan D. McCloskey ◽  
Ho Bum Park ◽  
Hao Ju ◽  
Brandon W. Rowe ◽  
Daniel J. Miller ◽  
...  

2012 ◽  
Vol 65 (1) ◽  
pp. 127-134 ◽  
Author(s):  
Weerapong Rukapan ◽  
Benyapa Khananthai ◽  
Chart Chiemchaisri ◽  
Wilai Chiemchaisri ◽  
Thirdpong Srisukphun

This research is focused on characterizing the foulants on a reverse osmosis (RO) membrane taken from a full-scale leachate treatment plant in Thailand. The system consists of a physico-chemical pre-treatment unit and RO system and has been in operation for 2 years. Ferric chloride (FeCl3) was added to the open-jet sedimentation tank at 2.0–2.5 g/l dosage for chemical coagulation. The supernatant from the sedimentation tank was polished using a pressurized sand filter prior to entering the RO system. The RO unit consists of seven pressurized vessels and 42 membrane elements (6 elements in each vessel). The recovery ratio and operating pressure in the RO system were maintained at 50% and 1.5–2.5 MPa. Fouled membranes obtained from short-term (6 months) and long-term operation (2 years) were taken from the system and analyzed by autopsy and sequential cleaning methods. The analysis of foulants on the membrane surfaces revealed that Fe deposits at 3.11 g/m2. For short-term operated membranes, water cleaning could recover 32.14 and 7.45% of initial pure water flux on the 1st and 6th membrane elements. NaOH cleaning, however, recovered more than 90% of initial flux, much higher than that of HCl solution in both elements. For long-term operated membranes, pure water flux recovery was below 5% for both 1st and 6th elements. Sequential cleaning by NaOH followed by HCl yielded the best results. Nevertheless, flux recovery through sequential cleaning of long-term operated membranes was only 35.3 and 19.1% for the 1st and the 6th elements, respectively.


2011 ◽  
Vol 480-481 ◽  
pp. 201-206
Author(s):  
Li Guo Wang ◽  
Xiu Ju Wang ◽  
Ai Min Wang ◽  
Wen Juan Liu ◽  
Shi Qi Guo ◽  
...  

Hydrophilic Polyvinylidene fluoride (PVDF) hollow fiber ultrafiltration membranes were prepared by wet-spinning method. The effects of technical parameters of acrylic acid grafted onto PVDF on the performance of hydrophilic PVDF membranes were investigated via orthogonal test, the technical parameters of preparation of hydrophilic PVDF membranes were determined, and hydrophilic PVDF membranes were prepared. Then hydrophilic PVDF membranes were characterized in terms of breaking strength, breaking elongation, rupture pressure, pure water flux and rejection. The fouling properties and the conditions of acrylic acid grafted onto PVDF were also examined. The results showed that acrylic acid had been grafted onto PVDF, the breaking strength and rupture pressure improved greatly, and the fouling properties were better than PS hollow fiber UF membrane.


2017 ◽  
Vol 79 (1-2) ◽  
Author(s):  
Siti Khadijah Hubadillah ◽  
Mohd Hafiz Dzarfan Othman ◽  
A. F. Ismail ◽  
Mukhlis A. Rahman ◽  
Juhana Jaafar

Ceramic hollow fibre membrane (CHFM) demonstrated superior characteristics and performance in any separation application. The only problem associated with this kind of technology is the high cost. In order to effectively fabricate and produce low cost porous CHFM, a series of CHFMs made of kaolin were fabricated via combined phase inversion and sintering technique. The CHFMs from kaolin named as kaolin hollow fibre membranes (KHFMs) were studied at different kaolin contents of 35 wt.%, 37.5 wt.% and 40 wt.% sintered at 1200ºC. The result indicated that by varying kaolin contents, different morphologies were obtained due to changes in the viscosity of ceramic suspension containing kaolin. The optimum kaolin content for KHFM was identified. It was found that KHFM prepared at 37.5 wt% has a mechanical strength and pure water flux of A and B respectively.  


2014 ◽  
Vol 931-932 ◽  
pp. 168-172 ◽  
Author(s):  
Asmadi Ali ◽  
Mohamad Awang ◽  
Ramli Mat ◽  
Anwar Johari ◽  
Mohd Johari Kamaruddin ◽  
...  

It is well known that membrane with hydrophobic property is a fouling membrane. Polysulfone (PSf) membrane has hydrophobic characteristic was blended with a hydrophilic polymer, cellulose acetate phthalate (CAP) in order to increase hydrophilicity property of pure PSf membrane. In this study, membrane casting solutions containing 17 wt% of polymer was prepared via wet phase inversion process. The pure PSf membrane was coded as PC-0. PSf/CAP blend membranes with blend composition of 95/5, 90/10, 85/15 and 80/20 wt% of total polymer concentration in the membrane casting solutions were marked as PC-5, PC-10, PC-15 and PC-20 respectively. All of the membranes were characterized in terms of pure water flux and permeability coefficient in order to study their hydrophilicity properties. The investigated results shows that increased of CAP composition in PSf blend membranes has increased pure water flux, permeability coefficient and porosity of the blend membrane which in turn formed membrane with anti-fouling property.


2018 ◽  
Vol 18 (1) ◽  
pp. 1
Author(s):  
Romaya Sitha Silitonga ◽  
Nurul Widiastuti ◽  
Juhana Jaafar ◽  
Ahmad Fauzi Ismail ◽  
Muhammad Nidzhom Zainol Abidin ◽  
...  

Poly(vinylidene fluoride) (PVDF) has outstanding properties such as high thermal stability, resistance to acid solvents and good mechanical strength. Due to its properties, PVDF is widely used as a membrane matrix. However, PVDF membrane is hydrophobic properties, so as for specific applications, the surface of membrane needs to be modified to become hydrophilic. This research aims to modify PVDF membrane surface with chitosan and glutaraldehyde as a crosslinker agent. The FTIR spectra showed that the modified membrane has a peak at 1655 cm-1, indicating the imine group (–N=C)- that was formed due to the crosslink between amine group from chitosan and aldehyde group from glutaraldehyde. Results showed that the contact angle of the modified membrane decreases to 77.22° indicated that the membrane hydrophilic properties (< 90°) were enhanced. Prior to the modification, the contact angle of the PVDF membrane was 90.24°, which shows hydrophobic properties (> 90°). The results of porosity, Ɛ (%) for unmodified PVDF membrane was 55.39%, while the modified PVDF membrane has a porosity of 81.99%. Similarly, by modifying the PVDF membrane, pure water flux increased from 0.9867 L/m2h to 1.1253 L/m2h. The enhancement of porosity and pure water flux for the modified PVDF membrane was due to the improved surface hydrophilicity of PVDF membrane.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 703
Author(s):  
Yi Ding ◽  
Zhansheng Guo ◽  
Xinan Dong ◽  
Hong You ◽  
Junxue Mei ◽  
...  

Based on carboxylated multi-walled carbon nanotubes (MWCNTs-COOH), a MWCNTs/PVDF conductive membrane was prepared by a vacuum filtration cross-linking method. The surface compositions and morphology of conductive membranes were studied by X-ray photoelectron spectroscopy and high-resolution field emission scanning electron microscopy, respectively. The effects of cross-linked polymeric polyvinyl alcohol (PVA) on the conductive membrane properties such as the porosity, pore size distribution, pure water flux, conductivity, hydrophilicity, stability and antifouling properties were investigated. Results showed that the addition of PVA to the MWCNTs/PVDF conductive membrane decreased the pure water flux, porosity and the conductivity. However, the hydrophilicity of the modified MWCNTs/PVDF conductive membrane was greatly improved, and the contact angle of pure water was reduced from 70.18° to 25.48° with the addition of PVA contents from 0 wt% to 0.05 wt%. Meanwhile, the conductive membranes with higher content had a relatively higher stability. It was found that the conductive functional layer of the conductive membrane had an average mass loss rate of 1.22% in the 30 min ultrasonic oscillation experiment. The tensile intensity and break elongation ratio of the conductive membrane are improved by the addition of PVA, and the durability of the conductive membrane with PVA was superior to that without PVA added. The electric assisted anti-fouling experiments of modified conductive membrane indicated that compared with the condition without electric field, the average flux attenuation of the conductive membrane was reduced by 11.2%, and the membrane flux recovery rate reached 97.05%. Moreover, the addition of PVA could accelerate the clean of the conductive membranes.


2021 ◽  
Vol 02 (01) ◽  
Author(s):  
Mohd Riduan Jamalludin ◽  
◽  
Siti Khadijah Hubadillah ◽  
Zawati Harun ◽  
Muhamad Zaini Yunos ◽  
...  

This study investigates the effects of rice husk silica (RHS) as additive in the polysulfone membrane to enhance antifouling properties in membrane separation process. The performance (of what?) was evaluated in term of pure water flux (PWF), rejection and antifouling properties. The optimized of normalized flux (Jf /Jo) at different parameter in filtration (pH, ionic strength and tranmembrane-pressure) was carried out by using the response surface methodology (RSM). The results showed that the addition of 4 wt. % RHS give the highest flux at 300.50 L/m².hour (LMH). The highest rejection was found at 3 wt. % of RHS membrane with value 98% for UV254 and 96% for TOC. The optimal value of Jf/Jo was found at 0.62 with the condition of pH: 6.10, ionic strength: 0.05 mol/L and transmembrane-pressure: 2.67 bars. Optimize of RSM analysis from ANOVA also proved that the error of model is less than 0.05% which indicates that the model is significant.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 393
Author(s):  
Tanzila Anjum ◽  
Rahma Tamime ◽  
Asim Laeeq Khan

High-performance Mixed-Matrix Membranes (MMMs) comprising of two kinds of porous fillers UiO-66 and Zeolite 4Aand their combination were fabricated with polysulfone (PSf) polymer matrix. For the very first time, UiO-66 and Zeolite 4A were jointly used as nanofillers in MMMs with the objective of complimenting synergistic effects. The individual and complimentary effects of nanofillers were investigated on membrane morphology and performance, pure water flux, humic acid rejection, static humic acid adsorption, and antifouling properties of membranes. Scanning Electron Microscopy (SEM) analysis of membranes confirmed that all MMMs possessed wider macrovoids with higher nanofiller loadings than neat PSf membranes and the MMMs (PSf/UiO-66 and PSf/Zeolite 4A-UiO-66) showed tendency of agglomeration with high nanofiller loadings (1 wt% and 2 wt%). All MMMs exhibited better hydrophilicity and lower static humic acid adsorption than neat PSf membranes. Pure water flux of MMMs was higher than neat PSf membranes but the tradeoff between permeability and selectivity was witnessed in the MMMs with single nanofiller. However, MMMs with combined nanofillers (PSf/Zeolite 4A-UiO-66) showed no such tradeoff, and an increase in both permeability and selectivity was achieved. All MMMs with lower nanofiller loadings (0.5 wt% and 1 wt%) showed improved flux recovery. PSf/Zeolite 4A-UiO-66 (0.5 wt%) membranes showed the superior antifouling properties without sacrificing permeability and selectivity.


Sign in / Sign up

Export Citation Format

Share Document