scholarly journals Effects of Homogenization Conditions on the Microstructure Evolution of Aluminium Alloy EN AW 8006

Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 419
Author(s):  
Maja Vončina ◽  
Kristijan Kresnik ◽  
Darja Volšak ◽  
Jožef Medved

The industrial production of products, such as foil and aluminium alloy strips, begins with the production of semi-finished products in the form of slabs. These are produced by the continuous casting process, which is quick and does not allow the equilibrium conditions of solidification. Non-homogeneity—such as micro and macro segregation, non-equilibrium phases and microstructural constituents, as well as stresses arising during non-equilibrium solidification—are eliminated by means of homogenization annealing. In this way, a number of technological difficulties in the further processing of semi-finished products can be avoided. The aim of this research was the optimization of the homogenization annealing of the EN AW 8006 alloy. With the Thermo-Calc software, a thermodynamic simulation of equilibrium and non-equilibrium solidification was performed. Differential scanning calorimetry (DSC) was performed on selected samples in as-cast state and after various regimes of homogenization annealing and was used for the simulation of homogenization annealing. Using an optical microscope (OM), a scanning electron microscope (SEM) and an energy dispersion spectrometer (EDS), the microstructure of the samples was examined. Based on the results, it was concluded that homogenization annealing has already taken place after 8 h at 580 °C to the extent, that the material is then suitable for further processing.

2018 ◽  
Vol 54 (1) ◽  
pp. 59-66 ◽  
Author(s):  
U. Klancnik ◽  
B. Kosec ◽  
P. Mrvar ◽  
J. Medved

When regarding as-cast microstructures of highly alloyed metals, microsegregation of alloying elements is a common feature resulting from non-equilibrium conditions during solidification. The aim of this work is to predict the occurrence and severity of microsegregation in highly alloyed, centrifugally cast high speed steel used for rolls. The prediction was performed using thermodynamic Scheil-Gulliver modelling with Thermo-Calc software. The modelled predictions were then compared with differential scanning calorimetry, X-ray diffraction, light and electron microscopy with energy dispersive spectroscopy, all performed on an as-cast roll shell. Results show that chromium, molybdenum and vanadium have the highest tendency to microsegregation. Vanadium tends to form negative microsegregation, while molybdenum and chromium form positive microsegregation. Scanning electron microscopy revealed the presence of complex eutectic carbides, confirming the Scheil-Gulliver non-equilibrium solidification path via two main successive eutectic reactions.


2010 ◽  
Vol 654-656 ◽  
pp. 1393-1396 ◽  
Author(s):  
Agustín Bravo ◽  
Rafael Schouwenaars ◽  
Víctor H. Jacobo ◽  
Armando Ortiz

Mg-containing bronzes have received little attention in general technological applications due to their relatively complex processing conditions. However, Mg is one of the few metallic elements which may exhibit good tribological compatibility with iron and steel and as such is a possible candidate to replace lead in sliding bearing materials. This work describes the casting of such alloys in the form of thin ingots to produce cold rolled strip, as is done for commercial Al-Sn-based ductile triboalloys. Sound ingots could be produced with simple laboratory equipment, yielding slabs in the compositional range of Cu1Mg1Sn, Cu1Mg5Sn, Cu5Mg1Sn and Cu5Mg5Sn. Cooling curves were monitored by embedded thermocouples. Invariant points could be identified after appropriate filtering of the signal but did not correspond to the ternary equilibrium. Segregation and non-equilibrium phases were confirmed by metallography.


2016 ◽  
Vol 61 (3) ◽  
pp. 1337-1342 ◽  
Author(s):  
J. Konieczny ◽  
K. Labisz ◽  
M. Polok-Rubiniec ◽  
A. Włodarczyk-Fligier

Abstract This paper presents the influence of casting method and anodic treatment parameters on thickness and structure of an anodic layer formed on aluminium alloys. As test materials was used the aluminium alloy AlSi9Cu3, which was adopted to the casting process and anodic treatment. In this paper are presented the wear test results and metallographic examination, as well as hardness of non-anodised and anodised alloys subjected to anodising process. The investigations were performed using light and electron microscopy (AFM) for the microstructure determination. The morphology and size of the layer was also possible to determine. The anodising conditions for surface hardening and its influence on properties was analysed. The structure of the surface laser tray changes in a way, that there is a different thickness of the produced layer. The aluminium samples were examined in terms of metallography using the optical microscope with different image techniques as well as light microscope. Improving the anodization technology with appliance of different anodising conditions. Some other investigation should be performed in the future, but the knowledge found in this research concerning the proper process parameters for each type of alloy shows an interesting investigation direction. The combination of metallographic investigation for cast aluminium alloys – including electron microscope investigation – and anodising parameters makes the investigation very attractive for automobile industry, aviation industry, and others, where aluminium alloys plays an important role.


2014 ◽  
Vol 1019 ◽  
pp. 67-73 ◽  
Author(s):  
Levy Chauke ◽  
Kalenda Mutombo ◽  
Gonasagren Govender

<span><p>Semi-solid metal forming of aluminium alloys has demonstrated the capability to produce near net shaped high integrity components. Anodising of these components for aesthetic and/or improved corrosion resistance is specified by some designers or users of this technology. The corrosion behaviour of fully anodised and partially anodised A356 aluminium alloy plates produced using the CSIR Rheo-High Pressure Die Casting (CSIR-RHPDC) process was investigated using immersion testing in a 3.5% NaCl solution with pH = 7. Optical microscope equipped with image analysis software and scanning electron microscope (SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS) were used to evaluate the behaviour of the corroded samples. The fully anodised sample showed that the anodised surface displayed some surface degradation. This degradation was more severe on the anodised surface with surface liquid segregation (SLS), but provided sufficient protection to prevent corrosion of the base metal. The partially anodised sample showed severe corrosion of the based metal with the corrosion concentrated in the silicon rich eutectic and SLS regions.</p> <span style="font-family: Times New Roman; font-size: medium;" face="Times New Roman" size="3"> </span>


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7708
Author(s):  
Maja Vončina ◽  
Tilen Balaško ◽  
Jožef Medved ◽  
Aleš Nagode

During the die-casting process as well as the hot forming process, the tool is subjected to complex thermal, mechanical, and chemical stresses that can cause various types of damage to different parts of the tool. This study was carried out to determine the resistance of various tool steels, i.e., UTOPMO1, HTCS-130, and W600, in molten Al99.7 aluminum alloy at a temperature of 700 °C. The formation kinetics of the interaction layer between the molten aluminum and tool steels was studied using differential scanning calorimetry. Light and field-emission scanning electron microscopy were used to analyze the thickness and nature of the interaction layers, while thermodynamic calculations using the Thermo-Calc software were used to explain the results. The stability of the HTCS-130 and W600 tool steels is better than the stability of the UTOPMO1 tool steel in the molten Al99.7 aluminum. Two interaction layers were formed, which in all cases indicate an intermetallic Al13Fe4 layer near the aluminum alloy and an intermetallic Al5Fe2 layer near the tool steels, containing small round carbides. It was confirmed that Ni reduces the activity of aluminum in the ferrite matrix and causes a reduction in the thickness of the intermetallic layer.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2368
Author(s):  
Hegoi Amestoy ◽  
Paul Diego ◽  
Emilio Meaurio ◽  
Jone Muñoz ◽  
Jose-Ramon Sarasua

Poly(ε-caprolactone) (PCL) was mixed with submicron particles of barium sulfate to obtain biodegradable radiopaque composites. X-ray images comparing with aluminum samples show that 15 wt.% barium sulfate (BaSO4) is sufficient to present radiopacity. Thermal studies by differential scanning calorimetry (DSC) show a statistically significant increase in PCL degree of crystallinity from 46% to 52% for 25 wt.% BaSO4. Non-isothermal crystallization tests were performed at different cooling rates to evaluate crystallization kinetics. The nucleation effect of BaSO4 was found to change the morphology and quantity of the primary crystals of PCL, which was also corroborated by the use of a polarized light optical microscope (PLOM). These results fit well with Avrami–Ozawa–Jeziorny model and show a secondary crystallization that contributes to an increase in crystal fraction with internal structure reorganization. The addition of barium sulfate particles in composite formulations with PCL improves stiffness but not strength for all compositions due to possible cavitation effects induced by debonding of reinforcement interphase.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 184
Author(s):  
Hongwei Zhu ◽  
Haonan Li ◽  
Furen Xiao ◽  
Zhixiang Gao

Self-designed (NbTi)C nanoparticles were obtained by mechanical alloying, predispersed in Fe powder, and then added to 1045 steel to obtain modified cast steels. The microstructure of cast steels was investigated by an optical microscope, scanning electron microscope, X-ray diffraction, and a transmission electron microscope. The results showed that (NbTi)C particles can be added to steels and occur in the following forms: original ellipsoidal morphology nanoparticles with uniform dispersion in the matrix, cuboidal nanoparticles in the grain, and microparticles in the grain boundary. Calculations by Thermo-Calc software and solubility formula show that cuboidal (NbTi)C nanoparticles were precipitated in the grain, while the (NbTi)C microparticles were formed by eutectic transformation. The results of the tensile strength of steels show that the strength of modified steels increased and then declined with the increase in the addition amount. When the addition amount was 0.16 wt.%, the modified steel obtained the maximum tensile strength of 759.0 MPa, which is an increase of 52% compared with to that with no addition. The hardness of the modified steel increased with the addition of (NbTi)C nanoparticles. The performance increase was mainly related to grain refinement and the particle strengthening of (NbTi)C nanoparticles, and the performance degradation was related to the increase in eutectic (NbTi)C.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1211
Author(s):  
Maja Vončina ◽  
Aleš Nagode ◽  
Jožef Medved ◽  
Irena Paulin ◽  
Borut Žužek ◽  
...  

When extruding the casted rods from EN AW 2011 aluminium alloys, not only their homogenized structure, but also their extrudable properties were significantly influenced by the hardness of the alloy. In this study, the object of investigations was the EN AW 2011 aluminium alloy, and the effect of homogenisation time on hardness was investigated. First, homogenisation was carried out at 520 °C for different times, imitating industrial conditions. After homogenisation, the samples were analysed by hardness measurements and further characterised by microscopy and image analysis to verify the influence of homogenisation on the resulting microstructural constituents. In addition, non-equilibrium solidification was simulated using the program Thermo-Calc and phase formation during solidification was investigated. The homogenisation process enabled more rounded shape of the Al2Cu eutectic phase, equilibrium formation of the phases, and the precipitation in the matrix, leading to a significant increase in the hardness of the EN AW 2011 aluminium alloy. The experimental data revealed a suitable homogenisation time of 4–6 h at a temperature of 520 °C, enabling optimal extrusion properties.


2014 ◽  
Vol 783-786 ◽  
pp. 766-770
Author(s):  
Yan Lin He ◽  
Na Qiong Zhu ◽  
Wei Sen Zheng ◽  
Xiao Gang Lu ◽  
Lin Li

The non-equilibrium microstructure of Fe-C-Mn-Si TRIP steel is designed bythermodynamic and kinetic calculation. The upper limit of bainitic transformation temperature iscalculated and compared to that characterized by CCT curve determination. s M temperature isdetermined based on thermodynamics of martensitic transformation and sublattice model. Thecalculation is conducted via TQ6-patch in Thermo-Calc software. Comparison between thecalculations and experiments reveals the relationship between non-equilibrium phase compositionand heat treatment parameters which can be utilized to achieve the elaborate design of alloy and heattreatment for super TRIP steel.


Sign in / Sign up

Export Citation Format

Share Document