Efficient Diffusion Bonding between BSCCO Superconducting Multifilamentary Tapes

2008 ◽  
Vol 580-582 ◽  
pp. 295-298
Author(s):  
Gui Sheng Zou ◽  
Yan Ju Wang ◽  
Ai Ping Wu ◽  
Hai Lin Bai ◽  
Nai Jun Hu ◽  
...  

To improve the joining efficiency of Bi-Sr-Ca-Cu-O ( BSCCO) superconducting tapes, a new diffusion bonding technology with a direct uniaxial pressing at high temperature was developed to join 61-filament tapes. It was observed that bonding parameters such as bonding pressure and holding time, significantly affected the critical current ratio (CCRo). A peak CCRo value of 89 % for the lap-joined tapes was achieved at 3 MPa for 2 h when bonding temperature was 800 °C. Compared with the conventional diffusion bonding technology, this new technology remarkably shortened the fabrication period and improved the superconductivity of the joints. The bonding interface and microstructures of the joints were evaluated and correlated to the CCRo. An uniaxial pressing at high temperature was beneficial to interface bonding, and there was an optimal pressure value for the CCRo.

2015 ◽  
Vol 35 (3) ◽  
pp. 267-275 ◽  
Author(s):  
Chunpeng Chu ◽  
Bingyan Jiang ◽  
Laiyu Zhu ◽  
Fengze Jiang

Abstract A novel combination of thermal bonding and in-mold assembly technology was created to produce microfluidic chips out of polymethylmethacrylate (PMMA), which is named “in-mold bonding technology”. In-mold bonding experiments of microfluidic chips were carried out to investigate the influences of bonding process parameters on the deformation and bonding strength of microchannels. The results show that bonding temperature has the greatest impact on the deformation of microchannels, while bonding pressure and bonding time have more influence on deformation in height than in top width. Considering the bonding strength, the bonding temperature and the bonding pressure have more impact than the bonding time. The time is crucial for the sealing of the chips. By setting the bonding parameters reasonably, the microchannel deformation is <10%, while the bonding strength of the chips is 350 kPa. The production cycle of the chip is reduced to <5 min.


2005 ◽  
Vol 297-300 ◽  
pp. 918-926 ◽  
Author(s):  
Xu Chen ◽  
Jun Zhang ◽  
Chunlei Jiao ◽  
Yan Min Liu

The effects of different bonding parameters-temperature, pressure, curing time, bonding temperature ramp and post-processing on the adhesive strengths of Anisotropic Conductive Adhesive Film (ACF) interconnection were investigated. The test results showed the adhesive strength increased as the bonding temperature increase. The curing time had great influence on the adhesive strength of ACF joints. The adhesive strengths increased as the bonding pressure increasing, but decreased if the bonding pressure was over 0.25MPa. The effects of different Teflon thickness on the pressure header and post-processing on adhesive strengths performance of ACF joints were studied. It was shown that the 90o peeling strength became deteriorated as the Teflon thickness increase. Different post-processing conditions showed that the specimens kept in 120oC chamber for 30 minutes had the best performance of the ACF interconnection. The environmental experiments of the thermal cycling (-40 - 125oC) and the high temperature/humidity (85oC, 85%RH) aging were used to evaluate the reliability of the specimens with different bonding parameters. It was shown that the high temperature/humidity was the harshest condition to the ACF bonding. The optimum bonding parameters were determined to obtain better peeling strength.


Author(s):  
A. Sittaramane ◽  
G. Mahendran

This paper focused to determine optimal bonding parameters based on Taguchi method for maximizing bonding strength. The experiments were conducted on diffusion bonding machine using aluminium fly ash (AFA) composites. Three bonding parameters such as temperature, pressure and time, each at three levels were examined. Taguchi L27 orthogonal array was used as a design of experiment. The response table and the analysis of variance (ANOVA) were calculated to determine which process parameters significantly affect the bonding strength and also the % contribution of each parameter. The results show that the combination of factors and their levels of A2B3C3 i.e. the bonding done at a temperature of 475°C with a pressure of 10 MPa and time for 20 minutes yielded the optimum i.e. maximum bonding strength. Finally, ANOVA results indicated that all three process parameters significantly affected the bonding strength with a maximum contribution from the bonding temperature (85.93%), followed by bonding time (12.6%) and bonding pressure (1.48%). It is also observed that the bonding strength of the diffusion bonding process can be improved effectively through this approach.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1266 ◽  
Author(s):  
Han Mei ◽  
Lihui Lang ◽  
Xiaoxing Li ◽  
Hasnain Ali Mirza ◽  
Xiaoguang Yang

Due to the acceptable high-temperature deformation resistance of Inconel 718, its welding parameters such as bonding temperature and pressure are inevitably higher than those of general metals. As a result of the existing punitive processing environment, it is essential to control the deformation of parts while ensuring the bonding performance. In this research, diffusion bonding experiments based on the Taguchi method (TM) are conducted, and the uniaxial tensile strength and deformation ratio of the experimental joints are measured. According to experimental data, a deep neural network (DNN) was trained to characterize the nonlinear relationship between the diffusion bonding process parameters and the diffusion bonding strength and deformation ratio, where the overall correlation coefficient came out to be 0.99913. The double-factors analysis of bonding temperature–bonding pressure based on the prediction results of the DNN shows that the temperature increment of the diffusion bonding of Inconel 718 significantly increases the deformation ratio of the diffusion bonding joints. Therefore, during the multi-objective optimization of the bonding performance and deformation of components, priority should be given to optimizing the bonding pressure and duration only.


2011 ◽  
Vol 221 ◽  
pp. 8-14 ◽  
Author(s):  
Bing Yan Jiang ◽  
Zhou Zhou ◽  
Yao Liu

Microfluidic chips have a great prospect in the field of biochemical analysis with advantages of fast processes, high flux and low consumption. Molding and bonding are separated by the conventional procedure of hot embossing and bonding, resulting in low automation and long production cycle. In order to reduce cycle time and achieve mass production, this paper proposed In-mold Bonding technology with precisely controlled bonding pressure by injection molding machine’s movement of core-pulling. So simulation analysis for bonding process of PMMA microfluidic chip was carried out using finite element software to study microchannel distortion at different bonding temperature and pressure. The results show that, at a certain bonding pressure, when bonding temperature was lower than glass transition temperature(Tg), microchannel distortion didn’t change significantly, when bonding temperature was higher than Tg, microchannel deformation increases with increasing temperature. Small microchannel distortion was obtained at a temperature of 108°C,which was recommended as the suitable bonding temperature.


2007 ◽  
Vol 551-552 ◽  
pp. 163-168
Author(s):  
Wen Bo Han ◽  
D.Z. Wu ◽  
Guo Feng Wang ◽  
M.J. Tong

The superplastic forming and diffusion bonding (SPF/DB) is applied in aviation and space flight field. The SPF/DB process with gas pressure control for dissimilar superalloy structure was studied. Diffusion bonding parameters, including bonding temperature T, pressure P, time t, affect the joining mechanism. When the bonded specimen with 50&m thick nickel foil interlayer was tensile at room temperature, shear fracture of the joints with nickel foil interlayer takes place at the GH4141 superalloy part. The SPF/DB of four-layer sheets structure was investigated. The optimum parameters for the SPF/DB process are: forming temperature T=1243K, forming pressure P=1MPa, forming time t=35min. The microstructure of the bonded samples was characterized. The microstructure shows an excellent bonding at the interfaces. The distribution of thickness after SPF/DB was investigated.


2019 ◽  
Vol 15 (6) ◽  
pp. 1037-1052
Author(s):  
A. Arun Negemiya ◽  
S. Rajakumar ◽  
V. Balasubramanian

Purpose The purpose of this paper is to develop an empirical relationship for predicting the strength of titanium to austenitic stainless steel fabricated by diffusion bonding (DB) process. Process parameters such as bonding pressure, bonding temperature and holding time play the main role in deciding the joint strength. Design/methodology/approach In this study, three-factors, five-level central composite rotatable design was used to conduct the minimum number of experiments involving all the combinations of parameters. Findings An empirical relationship was developed to predict the lap shear strength (LSS) of the joints incorporating DB process parameters. The developed empirical relationship was optimized using particle swarm optimization (PSO). The optimized value discovered through PSO was compared with the response surface methodology (RSM). The joints produced using bonding pressure of 14 MPa, bonding temperature of 900°C and holding time of 70 min exhibited a maximum LSS of 150.51 MPa in comparison with other joints. This was confirmed by constructing response graphs and contour plots. Originality/value Optimizing the DB parameters using RSM and PSO, PSO gives an accurate result when compared with RSM. Also, a sensitivity analysis is carried out to identify the most influencing parameter for the DB process.


2015 ◽  
Vol 787 ◽  
pp. 495-499 ◽  
Author(s):  
K. Dheenadayalan ◽  
S. Rajakumar ◽  
V. Balasubramanian

In this investigation, Commercially Pure (Cp) titanium was diffusion bonded to AA7075-T6 aluminium alloy at various temperatures of 450, 475, 500, 525 and 5500C, bonding pressure of 17, MPa and holding time of 40 minutes was applied during the diffusion bonding. The effects of reaction temperature, Bonding time and atmosphere on the diffusion welding characteristics of titanium and aluminum have been studied. The maximum Lap shear strength was found to be 89 MPa for the specimen bonded at the temperature of 525°C, Bonding Pressure 17 MPa and Holding time for 40 min.


Author(s):  
Nader Nadermanesh ◽  
Abdolhamid Azizi ◽  
Sahebali Manafi

The diffusion bonding of 7075, 6061 and 5083 aluminium alloys to AZ31B magnesium was investigated using copper interlayer. An optical microscope along with scanning electron microscopes, equipped with an energy dispersive spectrometry/electron probe microanalysis, was utilized to characterize the microstructure of the joint. The mechanical properties of the joint were also assessed by micro-hardness and shear strength tests. The results indicate the high effect of temperature on the bonding results; so that, with a small change in temperature, severe changes were observed in the bonding results. A temperature range of 475°C–485°C and a minimum duration of 30 min with a low bonding pressure of 0.4 MPa were identified as advisable process conditions. The joint evaluation revealed the formation of CuAl2, Cu9Al4 and Al-Mg-Cu ternary phases on the aluminium-copper side, as well as Cu2Mg, CuMg2 and Al-Mg-Cu ternary phases on the magnesium-copper side in the reaction layer. When increasing the bonding temperature and duration, the amount of intermetallic compounds and, as a result, the mechanical properties of the joints changed. The highest shear strength and micro-hardness, related to the bonding performed at 480°C and holding time of 45 min, were 31.03 MPa and 167 HV, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
A. Arun Negemiya ◽  
A. N. Shankar ◽  
B. Guruprasad ◽  
B. Prakash ◽  
S. Dineshkumar ◽  
...  

The diffusion bonding (DB) method is used in this investigation to connect high-temperature dissimilar materials. The existence of difficult-to-remove oxide coatings on the titanium surfaces, as well as the arrangement of breakable metallic interlayers and oxide enclosures inside the bond region, provides the most significant challenges during the transition from AISI304 to Ti-6Al-4V alloying. In addition, an effort was made to advance DB processing maps for the operational connection of Ti-6Al-4V to AISI304 alloys to improve their performance. Joints had been created by combining several process factors, such as bonding temperature (T), bonding pressure (P), and holding time (t), to create diverse designs. Based on the findings, database processing maps were created. This set of processing maps may be used as a rough guideline for selecting appropriate DB process parameters for generating virtuous excellent bonds between Ti-6Al-4V and AISI304 alloys. The maximum lap shear strength (LSS) was achieved at 800°C, 15 MPa, and 45 min.


Sign in / Sign up

Export Citation Format

Share Document