scholarly journals Characterization of Postprandial Effects on CSF Metabolomics: A Pilot Study with Parallel Comparison to Plasma

Metabolites ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 185 ◽  
Author(s):  
Kosuke Saito ◽  
Kotaro Hattori ◽  
Tomohiro Andou ◽  
Yoshinori Satomi ◽  
Masamitsu Gotou ◽  
...  

Cerebrospinal fluid (CSF) metabolites reflect biochemical diffusion/export from the brain and possibly serve as biomarkers related to brain disease severity, pathophysiology, and therapeutic efficacy/toxicity. Metabolomic studies using blood matrices have demonstrated interindividual and preanalytical variation of blood metabolites, whereas those of CSF metabolites remain unclear. In this study, we aimed to delineate the postprandial effects on CSF metabolites because fasting of patients with brain-related disorders is challenging. We collected pre- and postprandial (1.5, 3, and 6 h) plasma and CSF from nine healthy subjects. Using a mass-spectrometry-based global metabolomics approach, 150 and 130 hydrophilic metabolites and 263 and 340 lipids were detected in CSF and plasma, respectively. Principal component analysis of CSF hydrophilic metabolites and lipids primarily classified individual subjects at any time point, suggesting that the postprandial effects had a lower impact than interindividual variations on CSF metabolites. Individually, less than 10% of the CSF metabolites were putatively altered by postprandial effects (with either significant differences or over 2-fold changes, but not both) at any time point. Thus, global CSF metabolite levels are not directly associated with food intake, and except for several putatively altered CSF metabolites, postprandial effects are not a major concern when applying CSF metabolomics to screen biomarkers.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Dhiya Al-Jumeily ◽  
Shamaila Iram ◽  
Francois-Benois Vialatte ◽  
Paul Fergus ◽  
Abir Hussain

Studies have reported that electroencephalogram signals in Alzheimer’s disease patients usually have less synchronization than those of healthy subjects. Changes in electroencephalogram signals start at early stage but, clinically, these changes are not easily detected. To detect this perturbation, three neural synchrony measurement techniques: phase synchrony, magnitude squared coherence, and cross correlation are applied to three different databases of mild Alzheimer’s disease patients and healthy subjects. We have compared the right and left temporal lobes of the brain with the rest of the brain areas (frontal, central, and occipital) as temporal regions are relatively the first ones to be affected by Alzheimer’s disease. Moreover, electroencephalogram signals are further classified into five different frequency bands (delta, theta, alpha beta, and gamma) because each frequency band has its own physiological significance in terms of signal evaluation. A new approach using principal component analysis before applying neural synchrony measurement techniques has been presented and compared with Average technique. The simulation results indicated that applying principal component analysis before synchrony measurement techniques shows significantly better results as compared to the lateral one. At the end, all the aforementioned techniques are assessed by a statistical test (Mann-WhitneyUtest) to compare the results.


1984 ◽  
Vol 30 (2) ◽  
pp. 188-191 ◽  
Author(s):  
S Yoshioka ◽  
S Saitoh ◽  
S Seki ◽  
K Seki

Abstract Six non-glucose polyols--mannose, fructose, 1-deoxyglucose, mannitol, glucitol, and inositol--were identified and evaluated in human serum and cerebrospinal fluid by gas-liquid chromatography and by gas-liquid chromatography/mass spectrometry. Concentrations of fructose, mannose, and inositol in the serum of healthy persons or children without metabolic diseases varied with age, as already reported for 1-deoxyglucose. Fructose, inositol, and glucitol concentrations in cerebrospinal fluid significantly exceeded those in serum. The method described here for determining polyols and for evaluating polyol patterns in serum, as well as the resulting data on children and healthy subjects, should be useful in investigations of the clinical and physiological significance of polyols.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Hardy Laura ◽  
Cantaut-Belarif Yasmine ◽  
Pietton Raphaël ◽  
Slimani Lotfi ◽  
Pascal-Moussellard Hugues

AbstractCerebrospinal fluid (CSF) circulation relies on the beating of motile cilia projecting in the lumen of the brain and spinal cord cavities Mutations in genes involved in cilia motility disturb cerebrospinal fluid circulation and result in scoliosis-like deformities of the spine in juvenile zebrafish. However, these defects in spine alignment have not been validated with clinical criteria used to diagnose adolescent idiopathic scoliosis (AIS). The aim of this study was to describe, using orthopaedic criteria the spinal deformities of a zebrafish mutant model of AIS targeting a gene involved in cilia polarity and motility, cfap298tm304. The zebrafish mutant line cfap298tm304, exhibiting alteration of CSF flow due to defective cilia motility, was raised to the juvenile stage. The analysis of mutant animals was based on micro-computed tomography (micro-CT), which was conducted in a QUANTUM FX CALIPER, with a 59 µm-30 mm protocol. 63% of the cfap298tm304 zebrafish analyzed presented a three-dimensional deformity of the spine, that was evolutive during the juvenile phase, more frequent in females, with a right convexity, a rotational component and involving at least one dislocation. We confirm here that cfap298tm304 scoliotic individuals display a typical AIS phenotype, with orthopedic criteria mirroring patient’s diagnosis.


Sign in / Sign up

Export Citation Format

Share Document