scholarly journals High Glucose Shifts the Oxylipin Profiles in the Astrocytes towards Pro-Inflammatory States

Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 311
Author(s):  
Dmitry V. Chistyakov ◽  
Sergei V. Goriainov ◽  
Alina A. Astakhova ◽  
Marina G. Sergeeva

Hyperglycemia is associated with several complications in the brain, which are also characterized by inflammatory conditions. Astrocytes are responsible for glucose metabolism in the brain and are also important participants of inflammatory responses. Oxylipins are lipid mediators, derived from the metabolism of polyunsaturated fatty acids (PUFAs) and are generally considered to be a link between metabolic and inflammatory processes. High glucose exposure causes astrocyte dysregulation, but its effects on the metabolism of oxylipins are relatively unknown and therefore, constituted the focus of our work. We used normal glucose (NG, 5.5 mM) vs. high glucose (HG, 25 mM) feeding media in primary rat astrocytes-enriched cultures and measured the extracellular release of oxylipins (UPLC-MS/MS) in response to lipopolysaccharide (LPS). The sensitivity of HG and NG growing astrocytes in oxylipin synthesis for various serum concentrations was also tested. Our data reveal shifts towards pro-inflammatory states in HG non-stimulated cells: an increase in the amounts of free PUFAs, including arachidonic (AA), docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, and cyclooxygenase (COX) mediated metabolites. Astrocytes cultivated in HG showed a tolerance to the LPS, and an imbalance between inflammatory cytokine (IL-6) and oxylipins release. These results suggest a regulation of COX-mediated oxylipin synthesis in astrocytes as a potential new target in treating brain impairment associated with hyperglycemia.

2021 ◽  
Vol 23 (1) ◽  
pp. 305
Author(s):  
Eunsoo Won ◽  
Kyoung-Sae Na ◽  
Yong-Ku Kim

Pro-inflammatory systemic conditions that can cause neuroinflammation and subsequent alterations in brain regions involved in emotional regulation have been suggested as an underlying mechanism for the pathophysiology of major depressive disorder (MDD). A prominent feature of MDD is disruption of circadian rhythms, of which melatonin is considered a key moderator, and alterations in the melatonin system have been implicated in MDD. Melatonin is involved in immune system regulation and has been shown to possess anti-inflammatory properties in inflammatory conditions, through both immunological and non-immunological actions. Melatonin has been suggested as a highly cytoprotective and neuroprotective substance and shown to stimulate all stages of neuroplasticity in animal models. The ability of melatonin to suppress inflammatory responses through immunological and non-immunological actions, thus influencing neuroinflammation and neurotoxicity, along with subsequent alterations in brain regions that are implicated in depression, can be demonstrated by the antidepressant-like effects of melatonin. Further studies that investigate the associations between melatonin, immune markers, and alterations in the brain structure and function in patients with depression could identify potential MDD biomarkers.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2549
Author(s):  
Dong Young Kang ◽  
Nipin Sp ◽  
Eun Seong Jo ◽  
Jin-Moo Lee ◽  
Kyoung-Jin Jang

Iron metabolism and heme biosynthesis are essential processes in cells during the energy cycle. Alteration in these processes could create an inflammatory condition, which results in tumorigenesis. Studies are conducted on the exact role of iron/heme metabolism in induced inflammatory conditions. This study used lipopolysaccharide (LPS)- or high-glucose-induced inflammation conditions in THP-1 cells to study how iron/heme metabolism participates in inflammatory responses. Here, we used iron and heme assays for measuring total iron and heme. We also used flow cytometry and Western blotting to analyze molecular responses. Our results demonstrated that adding LPS or high-glucose induced iron formation and heme synthesis and elevated the expression levels of proteins responsible for iron metabolism and heme synthesis. We then found that further addition of heme or 5-aminolevulinic acid (ALA) increased heme biosynthesis and promoted inflammatory responses by upregulating TLR4/NF-κB and inflammatory cytokine expressions. We also demonstrated the inhibition of heme synthesis using succinylacetone (SA). Moreover, N-MMP inhibited LPS- or high-glucose-induced inflammatory responses by inhibiting TLR4/NF-κB signaling. Hence, iron/heme metabolism checkpoints could be considered a target for treating inflammatory conditions.


2019 ◽  
Vol 20 (7) ◽  
pp. 1649 ◽  
Author(s):  
José Murrieta-Coxca ◽  
Sandra Rodríguez-Martínez ◽  
Mario Cancino-Diaz ◽  
Udo Markert ◽  
Rodolfo Favaro ◽  
...  

The IL-36 subfamily of cytokines has been recently described as part of the IL-1 superfamily. It comprises three pro-inflammatory agonists (IL-36α, IL-36β, and IL-36γ), their receptor (IL-36R), and one antagonist (IL-36Ra). Although expressed in a variety of cells, the biological relevance of IL-36 cytokines is most evident in the communication between epithelial cells, dendritic cells, and neutrophils, which constitute the common triad responsible for the initiation, maintenance, and expansion of inflammation. The immunological role of IL-36 cytokines was initially described in studies of psoriasis, but novel evidence demonstrates their involvement in further immune and inflammatory processes in physiological and pathological situations. Preliminary studies have reported a dynamic expression of IL-36 cytokines in the female reproductive tract throughout the menstrual cycle, as well as their association with the production of immune mediators and cellular recruitment in the vaginal microenvironment contributing to host defense. In pregnancy, alteration of the placental IL-36 axis has been reported upon infection and pre-eclampsia suggesting its pivotal role in the regulation of maternal immune responses. In this review, we summarize current knowledge regarding the regulatory mechanisms and biological actions of IL-36 cytokines, their participation in different inflammatory conditions, and the emerging data on their potential role in normal and complicated pregnancies.


2019 ◽  
Vol 44 (4) ◽  
pp. 435-448 ◽  
Author(s):  
Jonas Jarczyk ◽  
Benito A. Yard ◽  
Simone Hoeger

Background: The cholinergic anti-inflammatory pathway, positioned at the interface of the nervous and immune systems, is the efferent limb of the “inflammatory reflex” which mainly signals through the vagus nerve. As such, the brain can modulate peripheral inflammatory responses by the activation of vagal efferent fibers. Importantly, immune cells in the spleen express most cholinergic system components such as acetylcholine (ACh), choline acetyltransferase, acetylcholinesterase, and both muscarinic and nicotinic ACh receptors, making communication between both systems possible. In general, this communication down-regulates the inflammation, achieved through different mechanisms and depending on the cells involved. Summary: With the awareness that the cholinergic anti-inflammatory pathway serves to prevent or limit inflammation in peripheral organs, vagus nerve stimulation has become a promising strategy in the treatment of several inflammatory conditions. Both pharmacological and non-pharmacological methods have been used in many studies to limit organ injury as a consequence of inflammation. Key Messages: In this review, we will highlight our current knowledge of the cholinergic anti-inflammatory pathway, with emphasis on its potential clinical use in the treatment of inflammation-triggered kidney injury.


2021 ◽  
Vol 11 (8) ◽  
pp. 973
Author(s):  
Maria Cristina Petralia ◽  
Rosella Ciurleo ◽  
Alessia Bramanti ◽  
Placido Bramanti ◽  
Andrea Saraceno ◽  
...  

Schizophrenia (SCZ) is a severe psychiatric disorder with several clinical manifestations that include cognitive dysfunction, decline in motivation, and psychosis. Current standards of care treatment with antipsychotic agents are often ineffective in controlling the disease, as only one-third of SCZ patients respond to medications. The mechanisms underlying the pathogenesis of SCZ remain elusive. It is believed that inflammatory processes may play a role as contributing factors to the etiology of SCZ. Galectins are a family of β-galactoside-binding lectins that contribute to the regulation of immune and inflammatory responses, and previous reports have shown their role in the maintenance of central nervous system (CNS) homeostasis and neuroinflammation. In the current study, we evaluated the expression levels of the galectin gene family in post-mortem samples of the hippocampus, associative striatum, and dorsolateral prefrontal cortex from SCZ patients. We found a significant downregulation of LGALS8 (Galectin-8) in the hippocampus of SCZ patients as compared to otherwise healthy donors. Interestingly, the reduction of LGALS8 was disease-specific, as no modulation was observed in the hippocampus from bipolar nor major depressive disorder (MDD) patients. Prediction analysis identified TBL1XR1, BRF2, and TAF7 as potential transcription factors controlling LGALS8 expression. In addition, MIR3681HG and MIR4296 were negatively correlated with LGALS8 expression, suggesting a role for epigenetics in the regulation of LGALS8 levels. On the other hand, no differences in the methylation levels of LGALS8 were observed between SCZ and matched control hippocampus. Finally, ontology analysis of the genes negatively correlated with LGALS8 expression identified an enrichment of the NGF-stimulated transcription pathway and of the oligodendrocyte differentiation pathway. Our study identified LGALS8 as a disease-specific gene, characterizing SCZ patients, that may in the future be exploited as a potential therapeutic target.


2020 ◽  
Vol 11 (1) ◽  
pp. 241-250
Author(s):  
Zhenyu Li ◽  
Guangqian Ding ◽  
Yudi Wang ◽  
Zelong Zheng ◽  
Jianping Lv

AbstractTranscription factor EB (TFEB)-based gene therapy is a promising therapeutic strategy in treating neurodegenerative diseases by promoting autophagy/lysosome-mediated degradation and clearance of misfolded proteins that contribute to the pathogenesis of these diseases. However, recent findings have shown that TFEB has proinflammatory properties, raising the safety concerns about its clinical application. To investigate whether TFEB induces significant inflammatory responses in the brain, male C57BL/6 mice were injected with phosphate-buffered saline (PBS), adeno-associated virus serotype 8 (AAV8) vectors overexpressing mouse TFEB (pAAV8-CMV-mTFEB), or AAV8 vectors expressing green fluorescent proteins (GFPs) in the barrel cortex. The brain tissue samples were collected at 2 months after injection. Western blotting and immunofluorescence staining showed that mTFEB protein levels were significantly increased in the brain tissue samples of mice injected with mTFEB-overexpressing vectors compared with those injected with PBS or GFP-overexpressing vectors. pAAV8-CMV-mTFEB injection resulted in significant elevations in the mRNA and protein levels of lysosomal biogenesis indicators in the brain tissue samples. No significant changes were observed in the expressions of GFAP, Iba1, and proinflammation mediators in the pAAV8-CMV-mTFEB-injected brain compared with those in the control groups. Collectively, our results suggest that AAV8 successfully mediates mTFEB overexpression in the mouse brain without inducing apparent local inflammation, supporting the safety of TFEB-based gene therapy in treating neurodegenerative diseases.


2021 ◽  
Vol 394 (10) ◽  
pp. 2129-2139
Author(s):  
Tokiko Suzuki ◽  
Shigeyuki Yamashita ◽  
Kohshi Hattori ◽  
Naoyuki Matsuda ◽  
Yuichi Hattori

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3174
Author(s):  
Nhung Quynh Do ◽  
Shengdao Zheng ◽  
Bom Park ◽  
Quynh T. N. Nguyen ◽  
Bo-Ram Choi ◽  
...  

Myrciaria dubia (HBK) McVaugh (camu-camu) belongs to the family Myrtaceae. Although camu-camu has received a great deal of attention for its potential pharmacological activities, there is little information on the anti-oxidative stress and anti-inflammatory effects of camu-camu fruit in skin diseases. In the present study, we investigated the preventative effect of 70% ethanol camu-camu fruit extract against high glucose-induced human keratinocytes. High glucose-induced overproduction of reactive oxygen species (ROS) was inhibited by camu-camu fruit treatment. In response to ROS reduction, camu-camu fruit modulated the mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NFAT) signaling pathways related to inflammation by downregulating the expression of proinflammatory cytokines and chemokines. Furthermore, camu-camu fruit treatment activated the expression of nuclear factor E2-related factor 2 (Nrf2) and subsequently increased the NAD(P)H:quinone oxidoreductase1 (NQO1) expression to protect keratinocytes against high-glucose-induced oxidative stress. These results indicate that camu-camu fruit is a promising material for preventing oxidative stress and skin inflammation induced by high glucose level.


Author(s):  
Vanessa Kogel ◽  
Stefanie Trinh ◽  
Natalie Gasterich ◽  
Cordian Beyer ◽  
Jochen Seitz

AbstractAstrocytes are the most abundant cell type in the brain and crucial to ensure the metabolic supply of neurons and their synapse formation. Overnutrition as present in patients suffering from obesity causes astrogliosis in the hypothalamus. Other diseases accompanied by malnutrition appear to have an impact on the brain and astrocyte function. In the eating disorder anorexia nervosa (AN), patients suffer from undernutrition and develop volume reductions of the cerebral cortex, associated with reduced astrocyte proliferation and cell count. Although an effect on astrocytes and their function has already been shown for overnutrition, their role in long-term undernutrition remains unclear. The present study used primary rat cerebral cortex astrocytes to investigate their response to chronic glucose starvation. Cells were grown with a medium containing a reduced glucose concentration (2 mM) for 15 days. Long-term glucose starvation increased the expression of a subset of pro-inflammatory genes and shifted the primary astrocyte population to the pro-inflammatory A1-like phenotype. Moreover, genes encoding for proteins involved in the unfolded protein response were elevated. Our findings demonstrate that astrocytes under chronic glucose starvation respond with an inflammatory reaction. With respect to the multiple functions of astrocytes, an association between elevated inflammatory responses due to chronic starvation and alterations found in the brain of patients suffering from undernutrition seems possible.


2008 ◽  
Vol 101 (5) ◽  
pp. 633-658 ◽  
Author(s):  
Amy R. Lomax ◽  
Philip C. Calder

β2-1 Fructans are carbohydrate molecules with prebiotic properties. Through resistance to digestion in the upper gastrointestinal tract, they reach the colon intact, where they selectively stimulate the growth and/or activity of beneficial members of the gut microbiota. Through this modification of the intestinal microbiota, and by additional mechanisms, β2-1 fructans may have beneficial effects upon immune function, ability to combat infection, and inflammatory processes and conditions. In this paper, we have collated, summarised and evaluated studies investigating these areas. Twenty-one studies in laboratory animals suggest that some aspects of innate and adaptive immunity of the gut and the systemic immune systems are modified by β2-1 fructans. In man, two studies in children and nine studies in adults indicate that the adaptive immune system may be modified by β2-1 fructans. Thirteen studies in animal models of intestinal infections conclude a beneficial effect of β2-1 fructans. Ten trials involving infants and children have mostly reported benefits on infectious outcomes; in fifteen adult trials, little effect was generally seen, although in specific situations, certain β2-1 fructans may be beneficial. Ten studies in animal models show benefit of β2-1 fructans with regard to intestinal inflammation. Human studies report some benefits regarding inflammatory bowel disease (four positive studies) and atopic dermatitis (one positive study), but findings in irritable bowel syndrome are inconsistent. Therefore, overall the results indicate that β2-1 fructans are able to modulate some aspects of immune function, to improve the host's ability to respond successfully to certain intestinal infections, and to modify some inflammatory conditions.


Sign in / Sign up

Export Citation Format

Share Document