scholarly journals Measuring Glycolytic Activity with Hyperpolarized [2H7, U-13C6] D-Glucose in the Naive Mouse Brain under Different Anesthetic Conditions

Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 413
Author(s):  
Emmanuelle Flatt ◽  
Bernard Lanz ◽  
Yves Pilloud ◽  
Andrea Capozzi ◽  
Mathilde Hauge Lerche ◽  
...  

Glucose is the primary fuel for the brain; its metabolism is linked with cerebral function. Different magnetic resonance spectroscopy (MRS) techniques are available to assess glucose metabolism, providing complementary information. Our first aim was to investigate the difference between hyperpolarized 13C-glucose MRS and non-hyperpolarized 2H-glucose MRS to interrogate cerebral glycolysis. Isoflurane anesthesia is commonly employed in preclinical MRS, but it affects cerebral hemodynamics and functional connectivity. A combination of low doses of isoflurane and medetomidine is routinely used in rodent fMRI and shows similar functional connectivity, as in awake animals. As glucose metabolism is tightly linked to neuronal activity, our second aim was to assess the impact of these two anesthetic conditions on the cerebral metabolism of glucose. Brain metabolism of hyperpolarized 13C-glucose and 2H-glucose was monitored in two groups of mice in a 9.4 T MRI system. We found that the very different duration and temporal resolution of the two techniques enable highlighting the different aspects in glucose metabolism. We demonstrate (by numerical simulations) that hyperpolarized 13C-glucose reports on de novo lactate synthesis and is sensitive to CMRGlc. We show that variations in cerebral glucose metabolism, under different anesthesia, are reflected differently in hyperpolarized and non-hyperpolarized X-nuclei glucose MRS.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiangchuan Chen ◽  
Diana J. Beltran ◽  
Valeriya D. Tsygankova ◽  
Bobbi J. Woolwine ◽  
Trusharth Patel ◽  
...  

AbstractInflammation is associated with the development of anhedonia in major depression (MD), but the pathway by which inflammatory molecules gain access to the brain and lead to anhedonia is not clear. Molecules of the kynurenine pathway (KP), which is activated by inflammation, readily influx into the brain and generate end products that alter brain chemistry, disrupt circuit functioning, and result in the expression of inflammatory behaviors such as anhedonia. We examined the impact of plasma and CSF KP metabolites on brain chemistry and neural function using multimodal neuroimaging in 49 depressed subjects. We measured markers of glial dysfunction and distress including glutamate (Glu) and myo-inositol in the left basal ganglia using magnetic resonance spectroscopy (MRS); metrics of local activity coherence (regional homogeneity, ReHo) and functional connectivity from resting-state functional MRI measures; and anhedonia from the Inventory for Depressive Symptoms-Self Report Version (IDS-SR). Plasma kynurenine/tryptophan (KYN/TRP) ratio and cerebrospinal fluid (CSF) 3-hydroxykynurenine (3HK) were associated with increases in left basal ganglia myo-inositol. Plasma kynurenic acid (KYNA) and KYNA/QA were associated with decreases and quinolinic acid (QA) with increases in left basal ganglia Glu. Plasma and CSF KP were associated with decreases in ReHo in the basal ganglia and dorsomedial prefrontal regions (DMPFC) and impaired functional connectivity between these two regions. DMPFC-basal ganglia mediated the effect of plasma and CSF KP on anhedonia. These findings highlight the pathological impact of KP system dysregulation in mediating inflammatory behaviors such as anhedonia.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Helen Kathryn Cyrus

Purpose Overview of coaching for recovery. The paper aims to show an overview of work that was carried out over 11 years with groups of mental health and physical staff. As the facilitator who had run this course for the duration in Nottingham, this was an excellent opportunity to be at the forefront of a brand new project. Design/methodology/approach The introduction of the skills are taught over two consecutive days followed by a further day a month later. The idea of coaching is to be enabled to find the answers in themselves by the use of powerful questions and using the technique of the grow model, combined with practice enables the brain to come up with its own answers. Using rapport and enabling effective communication to deliver the outcome. Findings Evidence from staff/clients and the purpose of the paper shows that when you step back it allows the individual patients/staff to allow the brain to process to create to come up with their solutions, which then helps them to buy into the process and creates ownership. Research limitations/implications The evidence suggests that the approach that was there prior to the course was very much a clinical approach to working with clients and treating the person, administering medication and not focussing on the inner person or personal recovery. The staff review has shown that in the clinical context change is happening from the inside out. Practical implications “Helps change culture”; “change of work practice”; “it changed staff focus – not so prescriptive”; “powerful questions let clients come to their own conclusions”; “coaching gives the ability to find half full. Helps to offer reassurance and to find one spark of hope”. Social implications This has shown that the approach is now person-centred/holistic. This has been the “difference that has made the difference”. When this paper looks at the issues from a different angle in this case a coaching approach, applying technique, knowledge and powerful questions the results have changed. The same clients, same staff and same problems but with the use of a different approach, there is the evidence of a different outcome, which speaks for itself. The coaching method is more facilitative, therefore it illicit’s a different response, and therefore, result. Originality/value The results/evidence starts with the individual attending and their commitment to the process over the two-day course. Then going away for the four weeks/six for managers and a commitment again to practice. Returning to share the impact if any with the group. This, in turn, helps to inspire and gain motivation from the feedback to go back to work invigorated to keep going.


Author(s):  
Alimohammad Ranjbar ◽  
Elahe Kamali Ardakani ◽  
Rahele Zareshahi

Aims: In Iranian culture, due to some narratives from the prophet Mohammad about the use of frankincense during pregnancy for increasing IQ in children, some women consume frankincense during expectancy. This study's goal is to evaluate the relationship between frankincense used during pregnancy and the incidence of ADHD. Methods: In this study, the case group comprised children 4-17 years old referring to Shahid Chamran Pharmacy in Yazd from summer to winter 2018 for receiving Methylphenidate, those with whom a psychologist had identified ADHD based on DSM-V factors.  The control group included children of the same age group but without ADHD. For data gathering, a checklist was used with some questions on smoking, family history of ADHD, presence/absence of a specific disease during pregnancy, frankincense used during pregnancy, and a chemical medication consumed during pregnancy. Results: The main result demonstrated that the children whose mothers used frankincense during pregnancy were 0.67 times less likely to be affected by ADHD than those whose mothers did not use this substance. However, the difference failed to be statistically significant (P>0.05). Conclusion: Some studies report that frankincense can bear a positive effect on the development of the brain and possibly adequate formation of dendrites trees, axons and induce proper communication between them, so the impact of frankincense on the brain may be justified by its protective effect against the hyperactive child.


2014 ◽  
Vol 34 (4) ◽  
pp. 724-734 ◽  
Author(s):  
Eva MF Brekke ◽  
Tora S Morken ◽  
Marius Widerøe ◽  
Asta K Håberg ◽  
Ann-Mari Brubakk ◽  
...  

The neonatal brain is vulnerable to oxidative stress, and the pentose phosphate pathway (PPP) may be of particular importance to limit the injury. Furthermore, in the neonatal brain, neurons depend on de novo synthesis of neurotransmitters via pyruvate carboxylase (PC) in astrocytes to increase neurotransmitter pools. In the adult brain, PPP activity increases in response to various injuries while pyruvate carboxylation is reduced after ischemia. However, little is known about the response of these pathways after neonatal hypoxia-ischemia (HI). To this end, 7-day-old rats were subjected to unilateral carotid artery ligation followed by hypoxia. Animals were injected with [1,2-13C]glucose during the recovery phase and extracts of cerebral hemispheres ipsi- and contralateral to the operation were analyzed using 1H- and 13C-NMR (nuclear magnetic resonance) spectroscopy and high-performance liquid chromatography (HPLC). After HI, glucose levels were increased and there was evidence of mitochondrial hypometabolism in both hemispheres. Moreover, metabolism via PPP was reduced bilaterally. Ipsilateral glucose metabolism via PC was reduced, but PC activity was relatively preserved compared with glucose metabolism via pyruvate dehydrogenase. The observed reduction in PPP activity after HI may contribute to the increased susceptibility of the neonatal brain to oxidative stress.


2000 ◽  
Vol 20 (2) ◽  
pp. 327-336 ◽  
Author(s):  
Bjørnar Hassel ◽  
Anders Bråthe

The cerebral metabolism of lactate was investigated. Awake mice received [3-13C]lactate or [1-13C]glucose intravenously, and brain and blood extracts were analyzed by 13C nuclear magnetic resonance spectroscopy. The cerebral up-take and metabolism of [3-13C]lactate was 50% that of [1-13C]glucose. [3-13C]Lactate was almost exclusively metabolized by neurons and hardly at all by glia, as revealed by the 13C labeling of glutamate, γ-aminobutyric acid and glutamine. Injection of [3-13C]lactate led to extensive formation of [2-13C]lactate, which was not seen with [1-13C]glucose, nor has it been seen in previous studies with [2-13C]acetate. This formation probably reflected reversible carboxylation of [3-13C]pyruvate to malate and equilibration with fumarate, because inhibition of succinate dehydrogenase with nitropropionic acid did not block it. Of the [3-13C]lactate that reached the brain, 20% underwent this reaction, which probably involved neuronal mitochondrial malic enzyme. The activities of mitochondrial malic enzyme, fumarase, and lactate dehydrogenase were high enough to account for the formation of [2-13C]lactate in neurons. Neuronal pyruvate carboxylation was confirmed by the higher specific activity of glutamate than of glutamine after intrastriatal injection of [1-14C]pyruvate into anesthetized mice. This procedure also demonstrated equilibration of malate, formed through pyruvate carboxylation, with fumarate. The demonstration of neuronal pyruvate carboxylation demands reconsideration of the metabolic interrelationship between neurons and glia.


2017 ◽  
Vol 28 (3) ◽  
pp. 265-270 ◽  
Author(s):  
Szilvia Puskás ◽  
Norbert Kozák ◽  
Dóra Sulina ◽  
László Csiba ◽  
Mária Tünde Magyar

AbstractObstructive sleep apnea syndrome (OSAS) is characterized by the recurrent cessation (apnea) or reduction (hypopnea) of airflow due to the partial or complete upper airway collapse during sleep. Respiratory disturbances causing sleep fragmentation and repetitive nocturnal hypoxia are responsible for a variety of nocturnal and daytime complaints of sleep apnea patients, such as snoring, daytime sleepiness, fatigue, or impaired cognitive functions. Different techniques, such as magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography, are used to evaluate the structural and functional changes in OSAS patients. With quantitative electroencephalographic (qEEG) analysis, the possible existence of alterations in the brain electrical activity of OSAS patients can be investigated. We review the articles on qEEG results of sleep apnea patients and summarize the possible explanations of these qEEG measures. Finally, we review the impact of continuous positive airway pressure (CPAP) treatment on these alterations to assess whether CPAP use can eliminate alterations in the brain activity of OSAS patients.


2018 ◽  
Vol 23 (6) ◽  
pp. 1316-1332
Author(s):  
Daejin Kim ◽  
Hyang-Ok Lim

Aims and objectives/purpose/research questions: This study examines the cognitive nature of Korean–English conference interpreters by analyzing the creativity scores of professional interpreters and interpreter students and exploring the cause of the differences between them. Design/methodology/approach: We conducted the Torrance Tests of Creative Thinking (TTCT) on professional interpreters and interpreter students. The main scores and sub scores of the two groups were compared and analyzed. The quantitative results were complemented by selective in-depth interviews. Data and analysis: Forty-five subjects (21 professional interpreters and 24 interpreter students) participated in the study. The data from the TTCT main and subordinate scores were obtained. An independent t-test between the two groups was conducted. The creative style scores were compared to explain the differences between the two groups. Findings/conclusions: Contrary to our expectations, the creative verbal scores of the professional interpreters were significantly lower than the interpreter students’ scores. We also found other distinct differences between the two groups regarding several aspects of creativity including styles. We speculate that the different creative scores may reflect the impact that many years of professional interpretation experience have had on the cognition of the conference interpreters. Originality: The current study is a first attempt to explore the creative scores of professional interpreters and interpreter students with an analysis of the implications of the cognitive aspects of Korean–English conference interpreters. Significance/implications: Our study suggests that the difference in the creative scores of professional interpreters and interpreter students may be key to understanding the unique cognitive features of Korean–English conference interpreters. We surmise that the involvement of particular functions of the brain together with the professional experience of the interpreters caused the difference.


2017 ◽  
Vol 39 (1) ◽  
pp. 118-130 ◽  
Author(s):  
Subhabrata Mitra ◽  
Gemma Bale ◽  
David Highton ◽  
Roxanna Gunny ◽  
Cristina Uria-Avellanal ◽  
...  

Hypoxic ischemic encephalopathy (HIE) leads to significant morbidity and mortality. Impaired autoregulation after hypoxia-ischaemia has been suggested to contribute further to injury. Thalamic lactate/N-Acetylasperate (Lac/NAA) peak area ratio of > 0.3 on proton (1H) magnetic resonance spectroscopy (MRS) is associated with poor neurodevelopment outcome following HIE. Cytochrome-c-oxidase (CCO) plays a central role in mitochondrial oxidative metabolism and ATP synthesis. Using a novel broadband NIRS system, we investigated the impact of pressure passivity of cerebral metabolism (CCO), oxygenation (haemoglobin difference (HbD)) and cerebral blood volume (total haemoglobin (HbT)) in 23 term infants following HIE during therapeutic hypothermia (HT). Sixty-minute epochs of data from each infant were studied using wavelet analysis at a mean age of 48 h. Wavelet semblance (a measure of phase difference) was calculated to compare reactivity between mean arterial blood pressure (MABP) with oxCCO, HbD and HbT. OxCCO-MABP semblance correlated with thalamic Lac/NAA ( r = 0.48, p = 0.02). OxCCO-MABP semblance also differed between groups of infants with mild to moderate and severe injury measured using brain MRI score ( p = 0.04), thalamic Lac/NAA ( p = 0.04) and neurodevelopmental outcome at one year ( p = 0.04). Pressure passive changes in cerebral metabolism were associated with injury severity indicated by thalamic Lac/NAA, MRI scores and neurodevelopmental assessment at one year of age.


2021 ◽  
Vol 13 ◽  
Author(s):  
Yang Liu ◽  
Huiqun Fu ◽  
Yan Wu ◽  
Binbin Nie ◽  
Fangyan Liu ◽  
...  

Neuroinflammation has been recognized as a major cause for neurocognitive diseases. Although the hippocampus has been considered an important region for cognitive dysfunction, the influence of hippocampal neuroinflammation on brain functional connectivity (FC) has been rarely studied. In this study, lipopolysaccharide (LPS) was used to induce systemic inflammation and neuroinflammation in the aged rat brain, while elamipretide (SS-31) was used for treatment. Systemic and hippocampal inflammation were determined using ELISA, while astrocyte responses during hippocampal neuroinflammation were determined by interleukin 1 beta (IL-1β)/tumor necrosis factor alpha (TNFα) double staining immunofluorescence. Oxidative stress was determined by reactive oxidative species (ROS), electron transport chain (ETC) complex, and superoxide dismutase (SOD). Short- (<7 days) and long-term (>30 days) learning and spatial working memory were tested by the Morris water maze (MWM). Resting-state functional magnetic resonance imaging (rs-fMRI) was used to analyze the brain FC by placing seed voxels on the left and right hippocampus. Compared with the vehicle group, rats with the LPS exposure showed an impaired MWM performance, higher oxidative stress, higher levels of inflammatory cytokines, and astrocyte activation in the hippocampus. The neuroimaging examination showed decreased FC on the right orbital cortex, right olfactory bulb, and left hippocampus on day 3, 7, and 31, respectively, after treatment. In contrast, rats with SS-31 treatment showed lower levels of inflammatory cytokines, less astrocyte activation in the hippocampus, and improved MWM performance. Neuroimaging examination showed increased FC on the left-parietal association cortex (L-PAC), left sensory cortex, and left motor cortex on day 7 with the right flocculonodular lobe on day 31 as compared with those without SS-31 treatment. Our study demonstrated that inhibiting neuroinflammation in the hippocampus not only reduces inflammatory responses in the hippocampus but also improves the brain FC in regions related to the hippocampus. Furthermore, early anti-inflammatory treatment with SS-31 has a long-lasting effect on reducing the impact of LPS-induced neuroinflammation.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Traute Demirakca ◽  
Vita Cardinale ◽  
Sven Dehn ◽  
Matthias Ruf ◽  
Gabriele Ende

This study investigated the impact of “life kinetik” training on brain plasticity in terms of an increased functional connectivity during resting-state functional magnetic resonance imaging (rs-fMRI). The training is an integrated multimodal training that combines motor and cognitive aspects and challenges the brain by introducing new and unfamiliar coordinative tasks. Twenty-one subjects completed at least 11 one-hour-per-week “life kinetik” training sessions in 13 weeks as well as before and after rs-fMRI scans. Additionally, 11 control subjects with 2 rs-fMRI scans were included. The CONN toolbox was used to conduct several seed-to-voxel analyses. We searched for functional connectivity increases between brain regions expected to be involved in the exercises. Connections to brain regions representing parts of the default mode network, such as medial frontal cortex and posterior cingulate cortex, did not change. Significant connectivity alterations occurred between the visual cortex and parts of the superior parietal area (BA7). Premotor area and cingulate gyrus were also affected. We can conclude that the constant challenge of unfamiliar combinations of coordination tasks, combined with visual perception and working memory demands, seems to induce brain plasticity expressed in enhanced connectivity strength of brain regions due to coactivation.


Sign in / Sign up

Export Citation Format

Share Document