scholarly journals The Evolution of Leaf Function during Development Is Reflected in Profound Changes in the Metabolic Composition of the Vacuole

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 848
Author(s):  
Alice Destailleur ◽  
Théo Poucet ◽  
Cécile Cabasson ◽  
Ana Paula Alonso ◽  
Jean-Christophe Cocuron ◽  
...  

During its development, the leaf undergoes profound metabolic changes to ensure, among other things, its growth. The subcellular metabolome of tomato leaves was studied at four stages of leaf development, with a particular emphasis on the composition of the vacuole, a major actor of cell growth. For this, leaves were collected at different positions of the plant, corresponding to different developmental stages. Coupling cytology approaches to non-aqueous cell fractionation allowed to estimate the subcellular concentrations of major compounds in the leaves. The results showed major changes in the composition of the vacuole across leaf development. Thus, sucrose underwent a strong allocation, being mostly located in the vacuole at the beginning of development and in the cytosol at maturity. Furthermore, these analyses revealed that the vacuole, rather rich in secondary metabolites and sugars in the growth phases, accumulated organic acids thereafter. This result suggests that the maintenance of the osmolarity of the vacuole of mature leaves would largely involve inorganic molecules.

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 248
Author(s):  
Chang Ha Park ◽  
Hyeon Ji Yeo ◽  
Ye Jin Kim ◽  
Bao Van Nguyen ◽  
Ye Eun Park ◽  
...  

This study aimed to elucidate the variations in primary and secondary metabolites during Lycorisradiata flower development using high performance liquid chromatography (HPLC) and gas chromatography time-of-flight mass spectrometry (GC-TOFMS). The result showed that seven carotenoids, seven phenolic acids, three anthocyanins, and galantamine were identified in the L. radiata flowers. Most secondary metabolite levels gradually decreased according to the flower developmental stages. A total of 51 metabolites, including amines, sugars, sugar intermediates, sugar alcohols, amino acids, organic acids, phenolic acids, and tricarboxylic acid (TCA) cycle intermediates, were identified and quantified using GC-TOFMS. Among the hydrophilic compounds, most amino acids increased during flower development; in contrast, TCA cycle intermediates and sugars decreased. In particular, glutamine, asparagine, glutamic acid, and aspartic acid, which represent the main inter- and intracellular nitrogen carriers, were positively correlated with the other amino acids and were negatively correlated with the TCA cycle intermediates. Furthermore, quantitation data of the 51 hydrophilic compounds were subjected to partial least-squares discriminant analyses (PLS-DA) to assess significant differences in the metabolites of L. radiata flowers from stages 1 to 4. Therefore, this study will serve as the foundation for a biochemical approach to understand both primary and secondary metabolism in L. radiata flower development.


2021 ◽  
Vol 48 (2) ◽  
pp. 218
Author(s):  
Thirumurugen Kuppusamy ◽  
Dorothee Hahne ◽  
Kosala Ranathunge ◽  
Hans Lambers ◽  
Patrick M. Finnegan

Hakea prostrata R.Br. (Proteaceae) shows a ‘delayed greening’ strategy of leaf development characterised by reddish young leaves that become green as they mature. This trait may contribute to efficient use of phosphorus (P) during leaf development by first investing P in the development of leaf structure followed by maturation of the photosynthetic machinery. In this study, we investigated the properties of delayed greening in a highly P-efficient species to enhance our understanding of the ecological significance of this trait as a nutrient-saving and photoprotective strategy. In glasshouse-grown plants, we assessed foliar pigments, fatty acids and nutrient composition across five leaf developmental stages. Young leaves had higher concentrations of anthocyanin, P, nitrogen (N), copper (Cu), xanthophyll-cycle pigments and saturated fatty acids than mature leaves. As leaves developed, the concentration of anthocyanins decreased, whereas that of chlorophyll and the double bond index of fatty acids increased. In mature leaves, ~60% of the fatty acids was α-linolenic acid (C18:3 n-3). Mature leaves also had higher concentrations of aluminium (Al), calcium (Ca) and manganese (Mn) than young leaves. We conclude that delayed greening in H. prostrata is a strategy that saves P as well as N and Cu through sequential allocation of these resources, first to cell production and structural development, and then to supplement chloroplast development. This strategy also protects young leaves against photodamage and oxidative stress during leaf expansion under high-light conditions.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
F Epifano ◽  
S Genovese ◽  
P Lullo ◽  
S Fiorito ◽  
G Trivisonno ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 315
Author(s):  
Hailin Liu ◽  
Xin Han ◽  
Jue Ruan ◽  
Lian Xu ◽  
Bing He

The final size of plant leaves is strictly controlled by environmental and genetic factors, which coordinate cell expansion and cell cycle activity in space and time; however, the regulatory mechanisms of leaf growth are still poorly understood. Ginkgo biloba is a dioecious species native to China with medicinally and phylogenetically important characteristics, and its fan-shaped leaves are unique in gymnosperms, while the mechanism of G. biloba leaf development remains unclear. In this study we studied the transcriptome of G. biloba leaves at three developmental stages using high-throughput RNA-seq technology. Approximately 4167 differentially expressed genes (DEGs) were obtained, and a total of 12,137 genes were structure optimized together with 732 new genes identified. More than 50 growth-related factors and gene modules were identified based on DEG and Weighted Gene Co-expression Network Analysis. These results could remarkably expand the existing transcriptome resources of G. biloba, and provide references for subsequent analysis of ginkgo leaf development.


2004 ◽  
Vol 94 (2) ◽  
pp. 137-143 ◽  
Author(s):  
R. Deml

AbstractHaemolymph and osmeterial secretions of caterpillars of Lymantria monacha (Linnaeus) and L. concolor Walker were analysed by gas chromatography/mass spectrometry for low molecular weight secondary metabolites. The similarities of their chemical compositions were determined by means of cluster analysis techniques in order to characterize possible chemical variations related to developmental stage or food of the larvae. For this purpose, two dissimilarity coefficients (Euclidean distances, Canberra metrics) and four clustering methods (UPGMA, WPGMA, WPGMC, single linkage) were combined. The patterns of secondary compounds obtained from the haemolymph and osmeterial secretions studied did not differ statistically significantly between two groups of L. monacha larvae fed with either larch, Larix decidua Mil., or Norway spruce, Picea abies (L.), indicating no relevant influence of plant chemistry. However, haemolymph of penultimate instar larvae of L. concolor fed on Rhododendroncontained a mixture of compounds differing statistically significantly from that of last instar caterpillars. The total compositions of the corresponding gland secretions were statistically identical though the presence/amounts of individual compounds varied. This suggested that the haemolymph composition reflected changing physiological requirements of the successive instars, whereas the composition of the defensive mixtures remained comparatively constant, possibly due to a constant spectrum of potential enemies. A more pronounced age-dependence of larval chemistry was shown by a similar analysis of data from various developmental stages of L. dispar (Linnaeus) and one of its food plants. This analysis suggested plant composition affected the secondary chemistry of early larval instars of L. dispar. The results are discussed in terms of the roles of secondary metabolites in defence against natural enemies.


2021 ◽  
Vol 50 (9) ◽  
pp. 2675-2685
Author(s):  
Nur Diyana A. ◽  
Koh S.P. ◽  
Aziz N. ◽  
Hamid N.S.A. ◽  
Abdullah R. ◽  
...  

Mango leaves are known to possess many health benefits but the industry only focused on mango fruit production, resulting in abundant leaves being underutilized. In this study, we managed to transform mango leaves into a new fermented drink, which has a pleasant taste through the bio-fermentation process. Different maturity levels of mango leaves were selected; premature leaves (light brown, LBML), intermediate mature leaves (light green, LGML) and mature leaves (green, ML), which were subjected to a fermentation process using bacteria and yeast. Tannin content, organic acids profile and various enzymes functionality activities (e.g. inhibition of tyrosinase, elastase and acetylcholinesterase) studies were determined on fermented mango leaves drink. The reduction of tannins content in all fermented mango leaves resulted in a less astringent taste as a consequence of the microbial action to break down tannins. Acetic, oxalic, kojic and quinic acid are some of the organic acids detected in fermented mango leaves that contributed to its slightly acidic taste. In comparison to non-fermented mango leaves, all fermented samples, particularly LBML drink showed a significant improvement (P<0.05) in tyrosinase inhibition (87.96%). Fermented mango leaves also exhibited good inhibition activity towards elastase (>80%) and acetylcholinesterase (>90%). Further histopathology examination on various rat’s organs (kidney, liver, spleen, and stomach) showed no sign of inflammation symptoms. Through limit toxicological evaluation, the safety consumption rate (IC50 value) for fermented mango leaves was 1000 mL/50 kg of human bodyweight. The improvement functionality activities of fermented mango leaves with a higher inhibition rate against tyrosinase, elastase, and acetylcholinesterase indicate its great potential as a food remedy for anti-ageing treatment.


2021 ◽  
Vol 6 (1) ◽  
pp. 31-40
Author(s):  
Yustiny Andaliza Hasibuan ◽  
Diah Ratnadewi ◽  
Zainal Alim Mas’ud

Cinchona alkaloids are known as antimalaria and anti-arrhythmic. Due to the long waiting time to harvest, cell culture technology is a challenge. This study aimed to determine the effects of elicitors, filtrate of two strains of endophytic fungi and methyl jasmonate (MeJA), in cell suspension culture of Cinchona ledgeriana on quinine and quinidine production. The cells were cultured for seven weeks in woody plant (WP) media treated with either of those elicitors in various concentrations. The cells growth was observed and the alkaloids were analyzed by HPLC. Cells treated with MeJA failed to grow that led to the cell biomass insufficiency for alkaloids determination.  It indicates that the cells are quite sensitive to even low concentration of MeJA that hampered the growth. Cells treated with the filtrate of Diaporthe sp. M13-Millipore filtered (S2M) gave the least cell biomass but presented the highest content of both alkaloids. Diaporthe sp. strain M-13 is stronger as elicitor than M-23 for this plant species. Filtrate of non-virulent fungi can elevate the biosynthesis of alkaloids. This reconfirms that cultured cells are capable to produce secondary metabolites and the productivity can be increased by using an appropriate elicitor.  


Sign in / Sign up

Export Citation Format

Share Document