scholarly journals Current Review of Optical Neural Interfaces for Clinical Applications

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 925
Author(s):  
Younghoon Park ◽  
Sung-Yun Park ◽  
Kyungsik Eom

Neural interfaces, which enable the recording and stimulation of living neurons, have emerged as valuable tools in understanding the brain in health and disease, as well as serving as neural prostheses. While neural interfaces are typically based on electrical transduction, alternative energy modalities have been explored to create safe and effective approaches. Among these approaches, optical methods of linking neurons to the outside world have gained attention because light offers high spatial selectivity and decreased invasiveness. Here, we review the current state-of-art of optical neural interfaces and their clinical applications. Optical neural interfaces can be categorized into optical control and optical readout, each of which can be divided into intrinsic and extrinsic approaches. We discuss the advantages and disadvantages of each of these methods and offer a comparison of relative performance. Future directions, including their clinical opportunities, are discussed with regard to the optical properties of biological tissue.

Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 219
Author(s):  
Michael Vaeggemose ◽  
Rolf F. Schulte ◽  
Christoffer Laustsen

This review provides a comprehensive assessment of the development of hyperpolarized (HP) carbon-13 metabolic MRI from the early days to the present with a focus on clinical applications. The status and upcoming challenges of translating HP carbon-13 into clinical application are reviewed, along with the complexity, technical advancements, and future directions. The road to clinical application is discussed regarding clinical needs and technological advancements, highlighting the most recent successes of metabolic imaging with hyperpolarized carbon-13 MRI. Given the current state of hyperpolarized carbon-13 MRI, the conclusion of this review is that the workflow for hyperpolarized carbon-13 MRI is the limiting factor.


Author(s):  
Daria Krivonogova ◽  
◽  
Zoya Pedоnova ◽  

This article analyzes the current state and a potential use of pulseoximeters in veterinary medicine. Promising optical methods such as optical coherence tomography, pulseoximeter, and hyperspectral imaging have been clinically introduced into human medicine. But even though human and small animal medicine shares a personalized modern approach, biophotonics is still rarely used in veterinary medicine. Pulseoximeters are most often used when monitoring the condition of an animal during general anesthesia. Prospective optical devices for small animals, such as dogs and cats, should be reliable and resistant to damage (for example, due to bites or chewing), offering convenient and short measurements. The potential of using pulseoximeters for pet monitoring has yet to be explored. In this paper, we considered two methods of measurement, namely lumen oximetry and reflection oximetry. Based on the literature sources, we can conclude that the method of optical reflection oximetry has the same diagnostic value as the method of lumen oximetry and therefore can be used for veterinary pulseoximeters without losing the accuracy of pulse measurement and blood oxygenation. According to the results of the existing devices review, it was found that they mainly use the lumen oximetry method. This method is convenient for performing measurements in animals under anesthesia, but it is problematic for use on actively moving animals. The purpose of this work is to develop a new model of pulseoximeter for animals. A new type of the device based on an earlier unused method is proposed, and its advantages and disadvantages are described. Components for creation are proposed and a scheme based on these components is constructed.


2018 ◽  
Vol 58 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Péter Bucsky

Abstract The freight transport sector is a low profit and high competition business and therefore has less ability to invest in research and development in the field of autonomous vehicles (AV) than the private car industry. There are already different levels of automation technologies in the transport industry, but most of these are serving niche demands and answers have yet to be found about whether it would be worthwhile to industrialise these technologies. New innovations from different fields are constantly changing the freight traffic industry but these are less disruptive than on other markets. The aim of this article is to show the current state of development of freight traffic with regards to AVs and analyse which future directions of development might be viable. The level of automation is very different in the case of different transport modes and most probably the technology will favour road transport over other, less environmentally harmful traffic modes.


Author(s):  
Александр Григорьевич Комков ◽  
Александр Константинович Сокольский

В статье рассмотрено современное состояние энергоснабжения и перспективы развития альтернативных источников энергии на территории Крайнего Севера. Отмечено, что несмотря на острую потребность во внедрении возобновляемых источников энергии, установленные мощности всех ветряных и солнечных электростанций в регионе не превышают 7-8 МВт. Также в работе рассчитаны технический и экономический потенциал ветровой энергии региона, на основании которых подобрана наиболее эффективная установка. The article discusses the current state of energy supply and the prospects for the development of alternative energy sources in the Far North. It is noted that despite the urgent need for the introduction of renewable energy sources, the installed capacities of all wind and solar power plants in the region do not exceed 7-8 MW. Also, the technical and economic potential of the region’s wind energy was calculated based on which the most efficient installation was selected.


2020 ◽  
Vol 26 ◽  
Author(s):  
Emir Muzurović ◽  
Zoja Stanković ◽  
Zlata Kovačević ◽  
Benida Šahmanović Škrijelj ◽  
Dimitri P Mikhailidis

: Diabetes mellitus (DM) is a chronic and complex metabolic disorder, and also an important cause of cardiovascular (CV) diseases (CVDs). Subclinical inflammation, observed in patients with type 2 DM (T2DM), cannot be considered the sole or primary cause of T2DM in the absence of classical risk factors, but it represents an important mechanism that serves as a bridge between primary causes of T2DM and its manifestation. Progress has been made in the identification of effective strategies to prevent or delay the onset of T2DM. It is important to identify those at increased risk for DM by using specific biomarkers. Inflammatory markers correlate with insulin resistance (IR) and glycoregulation in patients with DM. Also, several inflammatory markers have been shown to be useful in assessing the risk of developing DM and its complications. However, the intertwining of pathophysiological processes and the not-quite-specificity of inflammatory markers for certain clinical entities limits their practical use. In this review we consider the advantages and disadvantages of various inflammatory biomarkers of DM that have been investigated to date as well as possible future directions. Key features of such biomarkers should be high specificity, non-invasiveness and cost-effectiveness.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 114
Author(s):  
Chang Lu ◽  
Qingjian Lu ◽  
Min Gao ◽  
Yuan Lin

The reversible and multi-stimuli responsive insulator-metal transition of VO2, which enables dynamic modulation over the terahertz (THz) regime, has attracted plenty of attention for its potential applications in versatile active THz devices. Moreover, the investigation into the growth mechanism of VO2 films has led to improved film processing, more capable modulation and enhanced device compatibility into diverse THz applications. THz devices with VO2 as the key components exhibit remarkable response to external stimuli, which is not only applicable in THz modulators but also in rewritable optical memories by virtue of the intrinsic hysteresis behaviour of VO2. Depending on the predesigned device structure, the insulator-metal transition (IMT) of VO2 component can be controlled through thermal, electrical or optical methods. Recent research has paid special attention to the ultrafast modulation phenomenon observed in the photoinduced IMT, enabled by an intense femtosecond laser (fs laser) which supports “quasi-simultaneous” IMT within 1 ps. This progress report reviews the current state of the field, focusing on the material nature that gives rise to the modulation-allowed IMT for THz applications. An overview is presented of numerous IMT stimuli approaches with special emphasis on the underlying physical mechanisms. Subsequently, active manipulation of THz waves through pure VO2 film and VO2 hybrid metamaterials is surveyed, highlighting that VO2 can provide active modulation for a wide variety of applications. Finally, the common characteristics and future development directions of VO2-based tuneable THz devices are discussed.


2021 ◽  
Vol 7 (1) ◽  
pp. 1880533
Author(s):  
Tiliksew Addis ◽  
Abera Kachi ◽  
Jun Wang

i-Perception ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 204166952110203
Author(s):  
Jonas K. Olofsson ◽  
Ingrid Ekström ◽  
Maria Larsson ◽  
Steven Nordin

Olfaction, the sense of smell, is characterized by a notable age-dependency such that aging individuals are more likely to have poor olfactory abilities. These impairments are considered to be mostly irreversible and as having potentially profound effects on quality of life and food behavior, as well as constituting warning signs of mortality, cognitive dysfunction, and dementia. Here, we review the current state of research on aging and olfaction, focusing on five topics which we regard to be of particular relevance for the field: nutrition and health, cognition and dementia, mortality, environment and genetics, and training-based enhancement. Under each of these headlines, we provide a state-of-the-art overview and discuss gaps in our knowledge which might be filled by further research. Understanding how olfactory abilities are diminished in aging, and how they may be alleviated or recovered, involves a set of challenging tasks for researchers in the years to come.


Sign in / Sign up

Export Citation Format

Share Document