scholarly journals Novel Platform for Regulation of Extracellular Vesicles and Metabolites Secretion from Cells Using a Multi-Linkable Horizontal Co-Culture Plate

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1431
Author(s):  
Takeo Shimasaki ◽  
Satoko Yamamoto ◽  
Risa Omura ◽  
Kagenori Ito ◽  
Yumiko Nishide ◽  
...  

Microfluidics is applied in biotechnology research via the creation of microfluidic channels and reaction vessels. Filters are considered to be able to simulate microfluidics. A typical example is the cell culture insert, which comprises two vessels connected by a filter. Cell culture inserts have been used for years to study cell-to-cell communication. These systems generally have a bucket-in-bucket structure and are hereafter referred to as a vertical-type co-culture plate (VTCP). However, VTCPs have several disadvantages, such as the inability to simultaneously observe samples in both containers and the inability of cell-to-cell communication through the filters at high cell densities. In this study, we developed a novel horizontal-type co-culture plate (HTCP) to overcome these disadvantages and confirm its performance. In addition, we clarified the migration characteristics of substances secreted from cells in horizontal co-culture vessels. It is generally assumed that less material is exchanged between the horizontal vessels. However, the extracellular vesicle (EV) transfer was found to be twice as high when using HTCP. Other merits include control of the degree of co-culture via the placement of cells. We believe that this novel HTCP container will facilitate research on cell-to-cell communication in various fields.

Author(s):  
W. Shain ◽  
H. Ancin ◽  
H.C. Craighead ◽  
M. Isaacson ◽  
L. Kam ◽  
...  

Neural protheses have potential to restore nervous system functions lost by trauma or disease. Nanofabrication extends this approach to implants for stimulating and recording from single or small groups of neurons in the spinal cord and brain; however, tissue compatibility is a major limitation to their practical application. We are using a cell culture method for quantitatively measuring cell attachment to surfaces designed for nanofabricated neural prostheses.Silicon wafer test surfaces composed of 50-μm bars separated by aliphatic regions were fabricated using methods similar to a procedure described by Kleinfeld et al. Test surfaces contained either a single or double positive charge/residue. Cyanine dyes (diIC18(3)) stained the background and cell membranes (Fig 1); however, identification of individual cells at higher densities was difficult (Fig 2). Nuclear staining with acriflavine allowed discrimination of individual cells and permitted automated counting of nuclei using 3-D data sets from the confocal microscope (Fig 3). For cell attachment assays, LRM5 5 astroglial cells and astrocytes in primary cell culture were plated at increasing cell densities on test substrates, incubated for 24 hr, fixed, stained, mounted on coverslips, and imaged with a 10x objective.


2020 ◽  
Author(s):  
Dario Brambilla ◽  
Laura Sola ◽  
Elisa Chiodi ◽  
Natasa Zarovni ◽  
Diogo Fortunato ◽  
...  

Extracellular vesicles (EVs) have attracted great interest among researchers due to their role in cell-cell communication, disease diagnosis, and drug delivery. In spite of their potential in the medical field, there is no consensus on the best method for separating microvesicles from cell culture supernatant and complex biological fluids. Obtaining a good recovery yield and preserving physical characteristics is critical for the diagnostic and therapeutic use of EVs. The separation is made complex by the fact that blood and cell culture media, contain a large number of nanoparticles in the same size range. Methods that exploit immunoaffinity capture provide high purity samples and overcome the issues of currently used separation methods. However, the release of captured nanovesicles requires harsh conditions that hinder their use in certain types of downstream analysis. Herein, a novel capture and release approach for small extracellular vesicles (sEVs), based on DNAdirected immobilization of antiCD63 antibody is presented. The flexible DNAlinker increases the capture efficiency and allows releasing of EVs by exploiting the endonucleasic activity of DNAse I. This separation protocol works under mild conditions, enabling the release of intact vesicles that can be successfully analyzed by imaging techniques. In this article sEVs recovered from plasma were characterized by established techniques for EVs analysis including nanoparticle tracking and transmission electron microscopy.<br>


2021 ◽  
pp. 135245852098754
Author(s):  
Gloria Dalla Costa ◽  
Tommaso Croese ◽  
Marco Pisa ◽  
Annamaria Finardi ◽  
Lorena Fabbella ◽  
...  

Background: Extracellular vesicles (EVs), a recently described mechanism of cell communication, are released from activated microglial cells and macrophages and are a candidate biomarker in diseases characterized by chronic inflammatory process such as multiple sclerosis (MS). Methods: We explored cerebrospinal fluid extracellular vesicle (CSF EV) of myeloid origin (MEVs), cytokine and chemokine levels in patients with clinically isolated syndrome (CIS). Results: We found that CSF MEVs were significantly higher in CIS patients than in controls and were inversely correlated to CSF CCL2 levels. MEVs level were significantly associated with an shorter time to evidence of disease activity (hazard ratio: 1.01, 95% confidence interval: 1.00–1.02, p < 0.01) independently from other known prognostic markers. Conclusion: After a first demyelinating event, CSF EVs may improve risk stratification of these patients and allow more targeted intervention strategies.


1992 ◽  
Vol 20 (1) ◽  
pp. 138-143
Author(s):  
Maria Carrara ◽  
Lorenzo Cima ◽  
Roberto Cerini ◽  
Maurizio Dalle Carbonare

A method has been developed whereby cosmetic products which are not soluble in water or in alcohol can be brought into contact with cell cultures by being placed in a cell culture insert, which is then placed in the cell culture well. Preliminary experiments were carried out with L929 cells, and cytotoxicity was evaluated by measuring neutral red uptake and the total protein content of treated cultured cells. Encouraging results were obtained in comparisons of three cosmetic emulsions and of one emulsion containing a range of concentrations of two preservatives, Kathon CG and Bronopol.


Author(s):  
Lorenzo Ceccarelli ◽  
Laura Marchetti ◽  
Chiara Giacomelli ◽  
Claudia Martini

Microglia are the major component of the innate immune system in the central nervous system. They promote the maintenance of brain homeostasis as well as support inflammatory processes that are often related to pathological conditions such as neurodegenerative diseases. Depending on the stimulus received, microglia cells dynamically change their phenotype releasing specific soluble factors and largely modify the cargo of their secreted extracellular vesicles (EVs). Despite the mechanisms at the basis of microglia actions have not been completely clarified, the recognized functions exerted by their EVs in patho-physiological conditions represent the proof of the crucial role of these organelles in tuning cell-to-cell communication, promoting either protective or harmful effects. Consistently, in vitro cell models to better elucidate microglia EV production and mechanisms of their release have been increased in the last years. In this review, the main microglial cellular models that have been developed and validated will be described and discussed, with particular focus on those used to produce and derive EVs. The advantages and disadvantages of their use will be evidenced too. Finally, given the wide interest in applying EVs in diagnosis and therapy too, the heterogeneity of available models for producing microglia EVs is here underlined, to prompt a cross-check or comparison among them.


2004 ◽  
Vol 4 (2) ◽  
pp. 88
Author(s):  
Kee Won Kim ◽  
Suk Young Park ◽  
Kyung Bock Lee ◽  
Hyun-su Kim

2020 ◽  
Vol 10 ◽  
Author(s):  
Bene A. Ekine-Afolabi ◽  
Anoka A. Njan ◽  
Solomon O. Rotimi ◽  
Anu R. I. ◽  
Attia M. Elbehi ◽  
...  

Cancer is the major cause of morbidity and mortality in the world today. The third most common cancer and which is most diet related is colorectal cancer (CRC). Although there is complexity and limited understanding in the link between diet and CRC, the advancement in research methods have demonstrated the involvement of non-coding RNAs (ncRNAs) as key regulators of gene expression. MicroRNAs (miRNAs) which are a class of ncRNAs are key players in cancer related pathways in the context of dietary modulation. The involvement of ncRNA in cancer progression has recently been clarified throughout the last decade. ncRNAs are involved in biological processes relating to tumor onset and progression. The advances in research have given insights into cell to cell communication, by highlighting the pivotal involvement of extracellular vesicle (EV) associated-ncRNAs in tumorigenesis. The abundance and stability of EV associated ncRNAs act as a new diagnostic and therapeutic target for cancer. The understanding of the deranging of these molecules in cancer can give access to modulating the expression of the ncRNAs, thereby influencing the cancer phenotype. Food derived exosomes/vesicles (FDE) are gaining interest in the implication of exosomes in cell-cell communication with little or no understanding to date on the role FDE plays. There are resident microbiota in the colon; to which the imbalance in the normal intestinal occurrence leads to chronic inflammation and the production of carcinogenic metabolites that lead to neoplasm. Limited studies have shown the implication of various types of microbiome in CRC incidence, without particular emphasis on fungi and protozoa. This review discusses important dietary factors in relation to the expression of EV-associated ncRNAs in CRC, the impact of diet on the colon ecosystem with particular emphasis on molecular mechanisms of interactions in the ecosystem, the influence of homeostasis regulators such as glutathione, and its conjugating enzyme-glutathione S-transferase (GST) polymorphism on intestinal ecosystem, oxidative stress response, and its relationship to DNA adduct fighting enzyme-0-6-methylguanine-DNA methyltransferase. The understanding of the molecular mechanisms and interaction in the intestinal ecosystem will inform on the diagnostic, preventive and prognosis as well as treatment of CRC.


2020 ◽  
Vol 295 (9) ◽  
pp. 2650-2663 ◽  
Author(s):  
Chelsea M. Winters ◽  
Ly Q. Hong-Brown ◽  
Hui-Ling Chiang

Extracellular vesicles (EVs) play important roles in cell-cell communication. In budding yeast (Saccharomyces cerevisiae), EVs function as carriers to transport cargo proteins into the periplasm for storage during glucose starvation. However, intracellular organelles that synthesize these EV-associated cargo proteins have not been identified. Here, we investigated whether cytoplasmic organelles—called intracellular vesicle clusters (IVCs)—serve as sites for the synthesis of proteins targeted for secretion as EV-associated proteins. Using proteomics, we identified 377 IVC-associated proteins in yeast cells grown under steady-state low-glucose conditions, with the largest group being involved in protein translation. Isolated IVCs exhibited protein synthesis activities that required initiation and elongation factors. We have also identified 431 newly synthesized proteins on isolated IVCs. Expression of 103Q-GFP, a foreign protein with a long polyglutamine extension, resulted in distribution of this protein as large puncta that co-localized with IVC markers, including fructose-1,6-bisphosphatase (FBPase) and the vacuole import and degradation protein Vid24p. We did not observe this pattern in cycloheximide-treated cells or in cells lacking VID genes, required for IVC formation. The induction of 103Q-GFP on IVCs adversely affected total protein synthesis in intact cells and on isolated IVCs. This expression also decreased levels of EV-associated cargo proteins in the extracellular fraction without affecting the number of secreted EVs. Our results provide important insights into the functions of IVCs as sites for the synthesis of EV-associated proteins targeted for secretion to the periplasm.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi45-vi46
Author(s):  
Franz Ricklefs ◽  
Manka Fuh ◽  
Cecile Maire ◽  
Mareike Holz ◽  
Katharina Kolbe ◽  
...  

Abstract BACKGROUND Extracellular vesicles (EVs) play an important role in cell-cell communication in different types of tumors, carrying multiple layers of biological functional molecules, including proteins, RNA, DNA and lipids. Their implication as biomarkers in tumor disease is under current investigation. We previously showed that EVs in glioblastoma reflect the tumor subtype and that glioblastoma patients have elevated circulating particle counts. Regarding to meningioma, it is not known to what extent these usually benign tumors secrete EVs and how these EVs reflect the tumor. Here we report the first study that analyzed meningioma cell-derived EVs. METHODS Meningioma tissue, short-term cell cultures and cell culture-derived EVs (menEVs), (n=4) were analyzed by global mass-spectromety, immunoblotting and imaging flow cytometry and compared to EVs from glioblastoma short-term cell cultures (gEVs), (n=4). Plasma EVs from meningioma patients (n = 12) were analyzed for their tetraspanin marker expression (CD9, CD81 and CD63). EVs were further analyzed by nanoparticle analysis (NTA) and electron microscopy. RESULTS menEVs were 110-140nm in size and exhibited vesicular structures by electron microscopy. We identified 269 proteins in menEVs through mass spectometry. 45 proteins were upregulated in menEVs compared to short-term cell culture and original tumor tissue. 99 proteins were exclusively found in menEVs compared to gEVs, with osteopontin being the top highly expressed protein within the mEV fraction. Both meningioma and glioblastoma patients have elevated circulating plasma EV counts (p< 0.01), as measured by NTA. CONCLUSION The increase in circulating plasma EVs in meningioma patients suggests that tumor cell-derived EVs augment the pool of circulating EVs and could be utilized to obtain information on the tumor by liquid biopsy. Osteopontin is known to be expressed at high levels in meningiomas and its association with menEVs may facilitate isolation of circulating meningioma-specific EVs for analysis.


Sign in / Sign up

Export Citation Format

Share Document