scholarly journals Phylogenetic Grouping of Human Ocular Escherichia coli Based on Whole-Genome Sequence Analysis

2020 ◽  
Vol 8 (3) ◽  
pp. 422
Author(s):  
Konduri Ranjith ◽  
Chinthala Reddy SaiAbhilash ◽  
Gumpili Sai Prashanthi ◽  
Shalem Raj Padakandla ◽  
Savitri Sharma ◽  
...  

Escherichia coli is a predominant bacterium in the intestinal tracts of animals. Phylogenetically, strains have been classified into seven phylogroups, A, B1, B2, C, D, E, and F. Pathogenic strains have been categorized into several pathotypes such as Enteropathogenic (EPEC), Enterotoxigenic (ETEC), Enteroinvasive (EIEC), Enteroaggregative (EAEC), Diffusely adherent (DAEC), Uropathogenic (UPEC), Shiga-toxin producing (STEC) or Enterohemorrhagic (EHEC) and Extra-intestinal pathogenic E. coli (ExPEC). E. coli also survives as a commensal on the ocular surface. However, under conditions of trauma and immune-compromised states, E. coli causes conjunctivitis, keratitis, endopthalmitis, dacyrocystitis, etc. The phylogenetic affiliation and the pathotype status of these ocular E. coli strains is not known. For this purpose, the whole-genome sequencing of the 10 ocular E. coli strains was accomplished. Based on whole-genome SNP variation, the ocular E. coli strains were assigned to phylogenetic groups A (two isolates), B2 (seven isolates), and C (one isolate). Furthermore, results indicated that ocular E. coli originated either from feces (enteropathogenic and enterotoxigenic), urine (uropathogenic), or from extra-intestinal sources (extra-intestinal pathogenic). A high concordance was observed between the presence of AMR (Antimicrobial Resistance) genes and antibiotic resistance in the ocular E. coli strains. Furthermore, several virulent genes (fimB to fimI, papB to papX, etc.) and prophages (Enterobacteria phage HK97, Enterobacteria phage P1, Escherichia phage D108 etc.) were unique to ocular E. coli. This is the first report on a whole-genome analysis of ocular E. coli strains.

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 262
Author(s):  
Isabel Carvalho ◽  
Nadia Safia Chenouf ◽  
Rita Cunha ◽  
Carla Martins ◽  
Paulo Pimenta ◽  
...  

The aim of the study was to analyze the mechanisms of resistance in extended-spectrum beta-lactamase (ESBL)- and acquired AmpC (qAmpC)-producing Escherichia coli isolates from healthy and sick cats in Portugal. A total of 141 rectal swabs recovered from 98 sick and 43 healthy cats were processed for cefotaxime-resistant (CTXR) E. coli recovery (in MacConkey agar supplemented with 2 µg/mL cefotaxime). The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method was used for E. coli identification and antimicrobial susceptibility was performed by a disk diffusion test. The presence of resistance/virulence genes was tested by PCR sequencing. The phylogenetic typing and multilocus sequence typing (MLST) were determined by specific PCR sequencing. CTXRE. coli isolates were detected in seven sick and six healthy cats (7.1% and 13.9%, respectively). Based on the synergy tests, 11 of 13 CTXRE. coli isolates (one/sample) were ESBL-producers (ESBL total rate: 7.8%) carrying the following ESBL genes: blaCTX-M-1 (n = 3), blaCTX-M-15 (n = 3), blaCTX-M-55 (n = 2), blaCTX-M-27 (n = 2) and blaCTX-M-9 (n = 1). Six different sequence types were identified among ESBL-producers (sequence type/associated ESBLs): ST847/CTX-M-9, CTX-M-27, CTX-M-1; ST10/CTX-M-15, CTX-M-27; ST6448/CTX-M-15, CTX-M-55; ST429/CTX-M-15; ST101/CTX-M-1 and ST40/CTX-M-1. Three of the CTXR isolates were CMY-2-producers (qAmpC rate: 2.1%); two of them were ESBL-positive and one ESBL-negative. These isolates were typed as ST429 and ST6448 and were obtained in healthy or sick cats. The phylogenetic groups A/B1/D/clade 1 were detected among ESBL- and qAmpC-producing isolates. Cats are carriers of qAmpC (CMY-2)- and ESBL-producing E. coli isolates (mostly of variants of CTX-M group 1) of diverse clonal lineages, which might represent a public health problem due to the proximity of cats with humans regarding a One Health perspective.


2012 ◽  
Vol 78 (13) ◽  
pp. 4677-4682 ◽  
Author(s):  
Charlotte Valat ◽  
Frédéric Auvray ◽  
Karine Forest ◽  
Véronique Métayer ◽  
Emilie Gay ◽  
...  

ABSTRACTIn line with recent reports of extended-spectrum beta-lactamases (ESBLs) inEscherichia coliisolates of highly virulent serotypes, such as O104:H4, we investigated the distribution of phylogroups (A, B1, B2, D) and virulence factor (VF)-encoding genes in 204 ESBL-producingE. coliisolates from diarrheic cattle. ESBL genes, VFs, and phylogroups were identified by PCR and a commercial DNA array (Alere, France). ESBL genes belonged mostly to the CTX-M-1 (65.7%) and CTX-M-9 (27.0%) groups, whereas those of the CTX-M-2 and TEM groups were much less represented (3.9% and 3.4%, respectively). One ESBL isolate wasstx1andeaepositive and belonged to a major enterohemorrhagicE. coli(EHEC) serotype (O111:H8). Two other isolates wereeaepositive butstxnegative; one of these had serotype O26:H11. ESBL isolates belonged mainly to phylogroup A (55.4%) and, to lesser extents, to phylogroups D (25.5%) and B1 (15.6%), whereas B2 strains were quasi-absent (1/204). The number of VFs was significantly higher in phylogroup B1 than in phylogroups A (P= 0.04) and D (P= 0.02). Almost all of the VFs detected were found in CTX-M-1 isolates, whereas only 64.3% and 33.3% of them were found in CTX-M-9 and CTX-M-2 isolates, respectively. These results indicated that the widespread dissemination of theblaCTX-Mgenes within theE. colipopulation from cattle still spared the subpopulation of EHEC/Shiga-toxigenicE. coli(STEC) isolates. In contrast to other reports on non-ESBL-producing isolates from domestic animals, B1 was not the main phylogroup identified. However, B1 was found to be the most virulent phylogroup, suggesting host-specific distribution of virulence determinants among phylogenetic groups.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mo Jia ◽  
Ifigenia Geornaras ◽  
Jennifer N. Martin ◽  
Keith E. Belk ◽  
Hua Yang

A comparative whole genome analysis was performed on three newly sequenced Escherichia coli O157:H7 strains with different stx profiles, previously isolated from feedlot cattle [C1-010 (stx1−, stx2c+), C1-057 (stx−), and C1-067 (stx1+, stx2a+)], as well as five foodborne outbreak strains and six stx-negative strains from NCBI. Phylogenomic analysis demonstrated that the stx2c-carrying C1-010 and stx-negative C1-057 strains were grouped with the six NCBI stx-negative E. coli O157:H7 strains in Cluster 1, whereas the stx2a-carrying C1-067 and five foodborne outbreak strains were clustered together in Cluster 2. Based on different clusters, we selected the three newly sequenced strains, one stx2a-carrying strain, and the six NCBI stx-negative strains and identify their prophages at the stx insertion sites. All stx-carrying prophages contained both the three Red recombination genes (exo, bet, gam) and their repressor cI. On the other hand, the majority of the stx-negative prophages carried only the three Red recombination genes, but their repressor cI was absent. In the absence of the repressor cI, the consistent expression of the Red recombination genes in prophages might result in more frequent gene exchanges, potentially increasing the probability of the acquisition of stx genes. We further investigated each of the 10 selected E. coli O157:H7 strains for their respective unique metabolic pathway genes. Seven unique metabolic pathway genes in the two stx2a-carrying strains and one in the single stx2c-carrying and seven stx-negative strains were found to be associated with an upstream insertion sequence 629 within a conserved region among these strains. The presence of more unique metabolic pathway genes in stx2a-carrying E. coli O157:H7 strains may potentially increase their competitiveness in complex environments, such as feedlot cattle. For the stx2c-carrying and stx-negative E. coli O157:H7 strains, the fact that they were grouped into the same phylogenomic cluster and had the same unique metabolic pathway genes suggested that they may also share closely related evolutionary pathways. As a consequence, gene exchange between them is more likely to occur. Results from this study could potentially serve as a basis to help develop strategies to reduce the prevalence of pathogenic E. coli O157:H7 in livestock and downstream food production environments.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Jingchao Chen ◽  
Yi Li ◽  
Kun Zhang ◽  
Hailei Wang

ABSTRACT The genomes of many strains of Escherichia coli have been sequenced, as this organism is a classic model bacterium. Here, we report the genome sequence of Escherichia coli DH5α, which is resistant to a T4 bacteriophage (CCTCC AB 2015375), while its other homologous E. coli strains, such as E. coli BL21, DH10B, and MG1655, are not resistant to phage invasions. Thus, understanding of the genome of the DH5α strain, along with comparative analysis of its genome sequence along with other sequences of E. coli strains, may help to reveal the bacteriophage resistance mechanism of E. coli .


2020 ◽  
Vol 9 (45) ◽  
Author(s):  
Yujie Zhang ◽  
Yen-Te Liao ◽  
Vivian C. H. Wu

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) serotype O103 is one of the primary pathogenic contaminants of beef products, contributing to several foodborne outbreaks in recent years. Here, we report the whole-genome sequence of a STEC O103:H2 strain isolated from cattle feces that contains a locus of enterocyte effacement (LEE) pathogenicity island.


2021 ◽  
Vol 74 (1) ◽  
Author(s):  
Hye-Ri Jung ◽  
Koeun Kim ◽  
Young Ju Lee

Abstract Background This study was conducted to analyze the genetic characteristics of 41 β-lactam-resistant Escherichia coli isolates, which are one of the common causes of environmental mastitis, isolated from the bulk tank milk of 290 dairy farms in five factories operated by three dairy companies in Korea. Results Analysis of the phenotypic and genotypic characteristics of β-lactam-resistant E. coli isolates revealed differences between factories even within the same company. Isolates from factory A1 and C1 showed high resistance to cephalothin (76.9 and 100%, respectively), which is a first-generation cephalosporins, whereas resistance to tetracycline was showed by only the isolates from factories B1 (60.0%), C2 (66.7%), and C3 (100%). Although all the 41 β-lactam-resistant E. coli isolates were positive for blaOXA-1, blaTEM-1 was highly prevalent in isolates from factories C2 (100%) and C3 (100%). Among 17 isolates resistant to both β-lactams and aminoglycosides, the most common multilocus sequence type was ST399 (13isolates, 76.5%). Furthermore, 2 (11.8%) and 12 (70.6%) isolates belonged to the phylogenetic groups B2 and D, respectively, which are invasive strains that cause intestinal infections, respectively. The predominant serogroup was O15 (70.6%), which is a globally distributed extraintestinal pathogen. Interestingly, one isolate from factory A1 belonged to O157 and carried six virulence genes, simultaneously. Conclusions Although E. coli isolates were isolated from bulk tank milk, and not the clinical mastitis samples, the presence of the phylogenetic groups B2 and D, and the serogroups O15 and O157, which harbor antimicrobial resistance genes and virulence factors, can pose a threat to public health.


2011 ◽  
Vol 2 (2) ◽  
pp. 93-96
Author(s):  
Ritu Agarwal ◽  
Chaman Deep ◽  
Saurabh K Patel ◽  
Ashok K Jain ◽  
Gopal Nath

Objective: To explore the genetic relatedness among the Escherichia coli isolates recovered from rectal mucosa of patients with Ulcerative Colitis(UC) as well as from non specific diarrhoea patients by using ERIC PCR (whole genome analysis). Material & Methods: A total of 44 strains of E coli, each from patients suffering from UC with exacerbation while on maintenance therapy, were isolated to see if there is any association with specific genotype of E coli with the clini-cal condition. For comparison, 20 strains of E coli were also isolated from patients suffering from non specific diarrhoea. These isolates were subjected to ERIC PCR for analysing similarity/ dissimilarity with each other based on the distribution of ERIC sequences in the whole genome of the bacterial species. Results: The dendrogram prepared on the basis of banding pattern showed that majority of UC patients (39/44, 88.6%) grouped in to one major cluster while second major cluster comprised mostly strains isolated from patients with non specific diarrhoea i.e. controls (17/18, 94.4%). Moreover, in the cluster representing UC patients, a total of 11 strains were observed to be genotypically similar followed by 8 strains by ERIC PCR. Conclusion: Our results strongly indicate that specific Escherichia coli strains may be involved/ associated with UC and its relapse. Key Words: Ulcerative colitis; Escherichia coli; ERIC; PCR DOI: http://dx.doi.org/10.3126/ajms.v2i2.4769Asian Journal of Medical Sciences 2 (2011) 93-96


2021 ◽  
Vol 15 (11) ◽  
pp. 1755-1760
Author(s):  
Jorge Acosta-Dibarrat ◽  
Edgar Enriquez-Gómez ◽  
Martín Talavera-Rojas ◽  
Edgardo Soriano-Vargas ◽  
Armando Navarro ◽  
...  

Introduction: Commensal Escherichia coli is defined as bacteria without known virulence factors that could be playing a specific role in some diseases; however, they could be responsible to disseminate antimicrobial resistance genes to other microorganisms. This study aimed to characterize the commensal E. coli isolates obtained from slaughtered sheep in the central region of Mexico. Methodology: Isolates were classified as commensal E. coli when distinctive genes related to diarrheagenic pathotypes (stx1, stx2, eae, bfp, LT, stp, ipaH, and aggR) were discarded by PCR. Identification of serotype, phylogenetic group, and antimicrobial resistance was also performed. Results: A total of 41 isolates were characterized. The phylogenetic groups found were B1 in 37 isolates (90.2%), A in 2 (4.8%), and 1 isolate (2.4%) for C and D groups. Serotypes associated with diarrhea in humans (O104:H2 and O154:NM) and hemolytic uremic syndrome (O8:NM) were detected. Thirty-three isolates (80%) were resistant to ceftazidime, 23 (56%), to tetracycline 8 (19.5%) to ampicillin, and 1 to amikacin. Six isolates (14.6%) were multidrug-resistant. Conclusions: This study provides new information about commensal E. coli in slaughtered sheep, high percentages of resistance to antibiotics, and different profiles of antimicrobial resistance were found, their dissemination constitute a risk factor towards the consuming population.


2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Bede Constantinides ◽  
Kevin K. Chau ◽  
T. Phuong Quan ◽  
Gillian Rodger ◽  
Monique I. Andersson ◽  
...  

Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonized with diverse populations of E. coli , Klebsiella pneumoniae and Klebsiella oxytoca , including both antimicrobial-resistant and susceptible strains. Using whole-genome sequencing of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies, which may vary as a result of different inputs and selection pressures. Whole-genome sequencing of 46 contemporaneous patient isolates identified one (2 %; 95 % CI 0.05–11 %) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10 % of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including bla CTX-M, bla SHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention. This article contains data hosted by Microreact.


Sign in / Sign up

Export Citation Format

Share Document