scholarly journals New Insights into the Oenological Significance of Candida zemplinina: Impact of Selected Autochthonous Strains on the Volatile Profile of Apulian Wines

2020 ◽  
Vol 8 (5) ◽  
pp. 628 ◽  
Author(s):  
Pasquale Russo ◽  
Maria Tufariello ◽  
Raffaela Renna ◽  
Mariana Tristezza ◽  
Marco Taurino ◽  
...  

In this investigation, we explored the oenological significance of Candida zemplinina (syn. Starmerella bacillaris) isolates from Apulian grape musts. Moreover, we provide the first evidence of the impact of different C. zemplinina strains on the wine aromatic properties tested as monocultures. We described the diversity of C. zemplinina strains isolated from grapes and the variability of ‘volatile’ phenotypes associated with this intraspecific variability. Thirty-three isolates were characterized at strain level by PCR-based approach and, among these, 16 strains were identified and then tested by microfermentation tests carried out in grape must. Analyzed strains were low producers of acetic acid and hydrogen sulphide, not able to decarboxylate a panel of representative amino acids, whereas they showed fructophilic character and significant glycerol production. Volatile profiles of produced wines were investigated by gas chromatography–mass spectrometry. The Odor Activity Values of all molecules were calculated and 12 compounds showed values above their odor thresholds. Two selected strains (35NC1 and 15PR1) could be considered as possible starter cultures since they were able to positively affect the sensory properties of obtained wine. This report firstly supplies evidence on the strain-specific impact of different C. zemplinina strains on the final aroma of produced wines.

Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 853 ◽  
Author(s):  
Magdalena Januszek ◽  
Paweł Satora ◽  
Tomasz Tarko

Volatile profile of spirits is the most important factor, because it can contribute to pleasant flavor. The aim of the study was to determine the impact of dessert apple cultivar used for fermentation on the concentration of volatile compounds in apple spirits. SPME-GC-MS (solid-phase microextraction- gas chromatography- mass spectrometry) method enables the detection of 69 substances and GC-FID (gas chromatography - flame ionization detector) 31 compounds. Characteristic volatiles for brandies obtained from Topaz were limonene, myrcene, methyl valerate and 1,1-diethoxy-propane, from Rubin—β-citronellol and isopropyl acetate, Elise—limonene, myrcene benzyl acetate and isopropyl acetate, Szampion—β-citronellol, Idared—1,1-diethoxy-propane and Jonagored—ethyl trans-4-decanoate. Of the ten analyzed apple spirits, those obtained from Topaz, Rubin and Elise cultivars demonstrated the most diverse profile of volatile compounds. Moreover, their oenological parameters that are the most important in the production of alcoholic beverages were the most favorable. On the other hand, the content of sugars was relatively low in Elise must, while it was highest in Topaz must, which later on translated into differences in alcohol content. Brandies obtained from Gloster contained the smallest concentrations of esters and terpenes. Results of the sensory analysis showed that highest rated brandies were obtained from Topaz, Rubin, Elise and Florina.


Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 645
Author(s):  
Lilia M. Beltrán-Barrientos ◽  
Hugo S. Garcia ◽  
Ricardo Reyes-Díaz ◽  
María C. Estrada-Montoya ◽  
María J. Torres-Llanez ◽  
...  

The aim of the present study was to characterize the aroma and volatile profiles of milk fermented by wild Lactococcus lactis NRRL B-50571 (FM-571) and NRRL B-50572 (FM-572) and co-fermented with both strains (co-FM). Milks fermented by these strains have been reported to have an antihypertensive effect, yet their sensory characteristics, which are of great importance for consumer acceptance of functional foods, have not been studied. In the study, volatiles were determined using solid-phase microextraction gas chromatography mass spectrometry (SPME-GC-MS) and aroma was determined by quantitative descriptive sensory analysis (QDA). Volatile compounds identified in FM-571, FM-572, and co-FM were mainly acids, alcohols, aldehydes, and ketones. FM-571 showed higher total relative volatile abundance than FM-572 or co-FM. Furthermore, the concentrations of specific amino acids (aa) were lower in FM-571 and co-FM than in FM-572. Thus, these results suggested that FM-571 or co-FM are more efficient in transforming specific aa into the corresponding volatiles than FM-572. Indeed, several alcohols and aldehydes, associated with the catabolism of these aa, were found in FM-571 and co-FM, but not in FM-572. Additionally, QDA showed that FM-571 and co-FM presented higher yeasty and cheesy aroma descriptors than FM-572. Also, total aroma intensity scores for FM-571 were higher than those for co-FM or FM-572. Thus, results suggested that the combination of these two specific wild L. lactis strains may complement amino acid catabolic routes that resulted in the enhancement or attenuation of aroma production of single strains, presenting new possibilities for the preparation of custom-made starter cultures.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3127
Author(s):  
Magdalena Januszek ◽  
Paweł Satora ◽  
Łukasz Wajda ◽  
Tomasz Tarko

Qualitative and quantitative profiles of volatiles in alcoholic beverages depend mainly on the quality of raw materials, yeasts used for fermentation, and processing technique. Saccharomyces bayanus is a yeast species which is not commonly used for the production of alcoholic beverages, but it is able to produce volatiles that add desirable aroma. Since there is little information regarding the application of that microorganism for the production of apple brandies and how it affects volatile profile of finished products, we decided to address that issue. The aim of the study was to determine the impact of S. bayanus on the profile of volatile compounds and sensory properties of apple spirits obtained from three apple cultivars (Topaz, Rubin, and Elise) in comparison to spirits obtained from fermentation carried out spontaneously or with Saccharomyces cerevisiae. Obtained brandies were analysed using gas chromatography–flame ionization detector (GC–FID), solid phase microextraction–gas chromatography–mass spectrometry (SPME–GC–MS) and sensorially. In our study, brandies produced from musts fermented by S. bayanus demonstrated the highest concentration of ethyl esters and increased concentrations of isoamyl acetate, 2-phenylethyl acetate, ethyl palmitate and hexanol. Moreover, our results support the hypothesis that non-Saccharomyces yeasts which are present during spontaneous fermentation and demonstrate higher β-glucosidase activities enhance aroma of alcoholic beverages through releasing aroma compounds from glycosidic forms, e.g., α-phellandrene, (E)-β-fanesene, (Z,E)-α-farnesene, α-farnesene, and farnesol. Considering results obtained in sensory analysis, we proved that S. bayanus is suitable for the production of apple brandies, improving their flavour. Brandies obtained from musts fermented by S. bayanus obtained the highest average range for “overall note” parameter in sensory analysis.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 199
Author(s):  
Joana Pinto ◽  
Ângela Carapito ◽  
Filipa Amaro ◽  
Ana Rita Lima ◽  
Carina Carvalho-Maia ◽  
...  

Timely diagnosis is crucial to improve the long-term survival of bladder cancer (BC) patients. The discovery of new BC biomarkers based in urine analysis is very attractive because this biofluid is in direct contact with the inner bladder layer, in which most of the neoplasms develop, and is non-invasively collected. Hence, this work aimed to unveil alterations in the urinary volatile profile of patients diagnosed with BC compared with cancer-free individuals, as well as differences among patients diagnosed at different tumor stages, to identify candidate biomarkers for non-invasive BC diagnosis and staging. Urine analysis was performed by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results unveiled that BC patients have a distinct urinary volatile profile characterized by higher levels of several alkanes and aromatic compounds, and lower levels of aldehydes, ketones and monoterpenes. Seventeen significantly altered volatiles were used to evaluate the performance for overall BC detection, disclosing 70% sensitivity, 89% specificity and 80% accuracy. Moreover, distinct urinary volatile profiles were found among patients diagnosed at different tumor stages (Ta/Tis, T1 and ≥T2). This work identified distinct urinary volatile signatures of BC patients with potential for non-invasive detection and staging of bladder cancer.


HortScience ◽  
2021 ◽  
pp. 1-8
Author(s):  
Chia-Hsun Ho ◽  
Man-Hsia Yang ◽  
Huey-Ling Lin

The volatile profile of the edible vegetable Gynura bicolor [Gynura bicolor (Roxb. ex Willd.) DC] was analyzed using gas chromatography-mass spectrometry (GC-MS). Isocaryophyllene (23.2%), α-pinene (16.8%), α-humulene (9.1%), β-pinene (7.3%), and copaene (7.0%) were identified as the major compounds in the leaves. In the stems, α-pinene (27.1%), β-pinene (13.0%), isocaryophyllene (7.8%), β-myrceneb (7.8%), 1-undecene (5.7%), and copaene (5.3%) were the main components. G. bicolor grows best at 25 °C. When cultivated at different temperatures (20 to 35 °C in incements of 5 °C), the volatile profiles shifted. The proportion of isocaryophyllene was lower at 20 °C than at the other temperatures. The relative amounts of α-pinene and α-humulene were highest at 20 °C, whereas copaene was highest at 35 °C. Principal component analysis (PCA) was used to explore the correlation between volatile compounds identified from the vegetative tissues and temperature treatments. It reveals the same trend with the previous statements and the first principal component (PC1) and the second principal component (PC2) explains up to 90% of the variance. Experimental results revealed that both temperature and vegetative organ correlate with the volatile emission profile of G. bicolor.


Fermentation ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 4
Author(s):  
Ana-Marija Jagatić Korenika ◽  
Ivana Tomaz ◽  
Darko Preiner ◽  
Marina Lavrić ◽  
Branimir Šimić ◽  
...  

Even though Saccharomyces cerevisiae starter cultures are still largely used nowadays, the non-Saccharomyces contribution is re-evaluated, showing positive enological characteristics. Among them, Lachancea thermotolerans is one of the key yeast species that are desired for their contribution to wine sensory characteristics. The main goal of this work was to explore the impact of L. thermotolerans commercial yeast strain used in sequential inoculation with S. cerevisiae commercial yeast on the main enological parameters and volatile aroma profile of Trnjak, Babić, Blatina, and Frankovka red wines and compare it with wines produced by the use of S. cerevisiae commercial yeast strain. In all sequential fermented wines, lactic acid concentrations were significantly higher, ranging from 0.20 mg/L in Trnjak up to 0.92 mg/L in Frankovka wines, while reducing alcohol levels from 0.1% v/v in Trnjak up to 0.9% v/v in Frankovka wines. Among volatile compounds, a significant increase of ethyl lactate and isobutyl acetate, geraniol, and geranyl acetate was detected in all wines made by use of L. thermotolerans. In Babić wines, the strongest influence of sequential fermentation was connected with higher total terpenes and total ester concentrations, while Trnjak sequentially fermented wines stood up with higher total aldehyde, volatile phenol, and total lactone concentrations. Control wines, regardless of variety, stood up with higher concentrations of total higher alcohols, especially isoamyl alcohol. The present work contributed to a better understanding of the fermentation possibilities of selected non-Saccharomyces strains in the overall red wine quality modeling.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 441
Author(s):  
Yan Yan ◽  
Shuang Chen ◽  
Yao Nie ◽  
Yan Xu

Pyrazines are important compounds in soy sauce aroma type Baijiu (SSAB). In this work, a total of 16 pyrazines were analyzed using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC–MS/MS) in SSAB. The quantitative results showed that 2,3,5,6-tetramethylpyrazine, 2,6-dimethylpyrazine and 2,3,5-trimethylpyrazine were the three most concentrated pyrazines. The highest odor activity value (OAV) was determined for 2-ethyl-3,5-dimethylpyrazine. Quantitative analysis combined with descriptive sensory analysis revealed that sub-threshold pyrazines (2,3-dimethylpyrazine, 2,3-diethylpyrazine, 2,3-diethyl-5-methylpyrazine and 2-acetyl-3-methylpyrazine) are significantly correlated with the roasted aroma in SSAB. Our study focused on the impact of sub-threshold pyrazines on the perception of roasted aroma in SSAB. The effect of the sub-threshold pyrazines was detected by the addition of various pyrazines in SSAB samples, despite their sub-threshold concentrations. Furthermore, the presence of sub-threshold pyrazines in dilute alcohol solution resulted in a significant reduction in the odor thresholds of supra-threshold pyrazines. Sensory investigation indicated that pyrazines have a synergistic effect on the perception of roasted aroma. The results highlighted the contribution of some pyrazines to the roasted aroma in SSAB despite their sub-threshold concentrations.


2021 ◽  
Vol 11 (13) ◽  
pp. 5855
Author(s):  
Samantha Reale ◽  
Valter Di Cecco ◽  
Francesca Di Donato ◽  
Luciano Di Martino ◽  
Aurelio Manzi ◽  
...  

Celery (Apium graveolens L.) is a vegetable belonging to the Apiaceae family that is widely used for its distinct flavor and contains a variety of bioactive metabolites with healthy properties. Some celery ecotypes cultivated in specific territories of Italy have recently attracted the attention of consumers and scientists because of their peculiar sensorial and nutritional properties. In this work, the volatile profiles of white celery “Sedano Bianco di Sperlonga” Protected Geographical Indication (PGI) ecotype, black celery “Sedano Nero di Torricella Peligna” and wild-type celery were investigated using head-space solid-phase microextraction combined with gas-chromatography/mass spectrometry (HS-SPME/GC-MS) and compared to that of the common ribbed celery. Exploratory multivariate statistical analyses were conducted using principal component analysis (PCA) on HS-SPME/GC-MS patterns, separately collected from celery leaves and petioles, to assess similarity/dissimilarity in the flavor composition of the investigated varieties. PCA revealed a clear differentiation of wild-type celery from the cultivated varieties. Among the cultivated varieties, black celery “Sedano Nero di Torricella Peligna” exhibited a significantly different composition in volatile profile in both leaves and petioles compared to the white celery and the prevalent commercial variety. The chemical components of aroma, potentially useful for the classification of celery according to the variety/origin, were identified.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2604
Author(s):  
Zhulin Wang ◽  
Rong Dou ◽  
Ruili Yang ◽  
Kun Cai ◽  
Congfa Li ◽  
...  

The change in phenols, polysaccharides and volatile profiles of noni juice from laboratory- and factory-scale fermentation was analyzed during a 63-day fermentation process. The phenol and polysaccharide contents and aroma characteristics clearly changed according to fermentation scale and time conditions. The flavonoid content in noni juice gradually increased with fermentation. Seventy-three volatile compounds were identified by solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC-MS). Methyl hexanoate, 3-methyl-3-buten-1-ol, octanoic acid, hexanoic acid and 2-heptanone were found to be the main aroma components of fresh and fermented noni juice. A decrease in octanoic acid and hexanoic acid contents resulted in the less pungent aroma in noni juice from factory-scale fermentation. The results of principal component analysis of the electronic nose suggested that the difference in nitrogen oxide, alkanes, alcohols, and aromatic and sulfur compounds, contributed to the discrimination of noni juice from different fermentation times and scales.


Sign in / Sign up

Export Citation Format

Share Document