scholarly journals Novel Sequence Types of Listeria monocytogenes of Different Origin Obtained in the Republic of Serbia

2021 ◽  
Vol 9 (6) ◽  
pp. 1289
Author(s):  
Tatiana Yu. Bespalova ◽  
Tatiana V. Mikhaleva ◽  
Nadezhda Yu Meshcheryakova ◽  
Olga V. Kustikova ◽  
Kazimir Matovic ◽  
...  

Listeria monocytogenes, the causative agent of listeriosis, is amongst the major food-borne pathogens in the world that affect mammal species, including humans. This microorganism has been associated with both sporadic episodes and large outbreaks of human listeriosis worldwide, with high mortality rates. In this study, the main sequence types (STs) and clonal complexes (CCs) were investigated in all of the 13 L. monocytogenes strains originating from different sources in the Republic of Serbia in 2004–2019 and that were available in the BIGSdb-Lm database. We found at least 13 STs belonging to the phylogenetic lineages I and II. These strains were represented by ST1/ST3/ST9 of CC1/CC3/CC9, which were common in the majority of the European countries and worldwide, as well as by eight novel STs (ST1232/ST1233/ST1234/ST1235/ST1238/ST1236/ST1237/ST1242) of CC19/CC155/CC5/CC21/CC3/CC315/CC37, and the rare ST32 (clonal complex ST32) and ST734 (CC1), reported in the Republic of Serbia, the EU, for the first time. Our study confirmed the association of CC1 with cases of neuroinfection and abortions among small ruminants, and of CC3 and CC9 with food products of animal origin. The strains isolated in 2019 carried alleles of the internalin genes (inlA/inlB/inlC/inlE) characteristic of the most virulent strains from the hypervirulent CC1. These findings demonstrated the genetic relatedness between L. monocytogenes strains isolated in the Republic of Serbia and worldwide. Our study adds further information about the diversity of the L. monocytogenes genotypes of small ruminants and food products, as the strain distribution in these sources in Serbia had not previously been evaluated.


2020 ◽  
Vol 8 (9) ◽  
pp. 1345
Author(s):  
Vanessa Salgueiro ◽  
Vera Manageiro ◽  
Narcisa M. Bandarra ◽  
Eugénia Ferreira ◽  
Lurdes Clemente ◽  
...  

The main aim of this study was the characterization of antibiotic resistance mechanisms in 82 Staphylococcus aureus strains isolated from humans and animals. Antibiotic susceptibility testing was performed on all S. aureus isolates accordingly, and antibiotic-resistant genes were investigated by genotypic methods. The genetic diversity of S. aureus was studied through spa, multilocus sequence typing (MLST), and agr typing methods. The majority of S. aureus from human sources were resistant to cefoxitin (and harbor the mecA gene) and fluoroquinolones, whereas only four strains of S. aureus from animal sources revealed resistance to ciprofloxacin. In the set of S. aureus isolated from humans, the most frequent spa, MLST, and agr group were t032, ST22, and I, respectively. In strains from animal origin the most common spa, MLST, and agr group found were t2383, ST398, and III/not typable, respectively. S. aureus from humans and animals were identified either in clonal complexes CC5, CC30, and CC398, suggesting that they have the same putative founder in their evolution. Considering the three CCs encompassing strains from human and animal reservoirs with different spa-types, we can hypothesize that this might reflect an adaptation to different phylogenetic lineages in those reservoirs (host species) probably associated to genetic diversification of pre-existing strains.



2008 ◽  
Vol 75 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Susanne Guenther ◽  
Dominique Huwyler ◽  
Simon Richard ◽  
Martin J. Loessner

ABSTRACT Food-borne Listeria monocytogenes is a serious threat to human health, and new strategies to combat this opportunistic pathogen in foods are needed. Bacteriophages are natural enemies of bacteria and are suitable candidates for the environmentally friendly biocontrol of these pathogens. In a comprehensive set of experiments, we have evaluated the virulent, broad-host-range phages A511 and P100 for control of L. monocytogenes strains Scott A (serovar 4b) and WSLC 1001 (serovar 1/2a) in different ready-to-eat (RTE) foods known to frequently carry the pathogen. Food samples were spiked with bacteria (1 � 103 CFU/g), phage added thereafter (3 � 106 to 3 � 108 PFU/g), and samples stored at 6�C for 6 days. In liquid foods, such as chocolate milk and mozzarella cheese brine, bacterial counts rapidly dropped below the level of direct detection. On solid foods (hot dogs, sliced turkey meat, smoked salmon, seafood, sliced cabbage, and lettuce leaves), phages could reduce bacterial counts by up to 5 log units. Variation of the experimental conditions (extended storage over 13 days or storage at 20�C) yielded similar results. In general, the application of more phage particles (3 � 108 PFU/g) was more effective than lower doses. The added phages retained most of their infectivity during storage in foods of animal origin, whereas plant material caused inactivation by more than 1 log10. In conclusion, our data demonstrate that virulent broad-host-range phages, such as A511 and P100, can be very effective for specific biocontrol of L. monocytogenes in contamination-sensitive RTE foods.



Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1007 ◽  
Author(s):  
Matle ◽  
Pierneef ◽  
Mbatha ◽  
Magwedere ◽  
Madoroba

Listeria monocytogenes is a highly fatal foodborne causative agent that has been implicated in numerous outbreaks and related deaths of listeriosis in the world. In this study, six L. monocytogenes isolated from ready-to-eat (RTE) meat products were analysed using Whole Genome Sequencing (WGS) to identify virulence and resistance genes, prophage sequences, PCR-serogroups, and sequence types (STs). The WGS identified four different STs (ST1, ST121, ST204, and ST876) that belonged to serogroup 4b (lineage I) and 1/2a (lineage II). Core genome, and average nucleotide identity (ANI) phylogenetic analyses showed that the majority of strains from serogroup 4b (lineage I) clustered together. However, two isolates that belong to serogroup 1/2a (lineage II) grouped far from each other and the other strains. Examination of reference-guided scaffolds for the presence of prophages using the PHAge Search Tool Enhanced Release (PHASTER) software identified 24 diverse prophages, which were either intact or incomplete/questionable. The National Center for Biotechnology Information- Nucleotide Basic Local Alignment Search Tool (NCBI-BLASTn) revealed that Listeria monocytogenes strains in this study shared some known major virulence genes that are encoded in Listeria pathogenicity islands 1 and 3. In general, the resistance profiles for all the isolates were similar and encoded for multidrug, heavy metal, antibiotic, and sanitizer resistance genes. All the isolates in this study possessed genes that code for resistance to common food processing antiseptics such as Benzalkonium chloride.





Author(s):  
Emil Tirziu ◽  
Viorel Herman ◽  
Ileana Nichita ◽  
Adriana Morar ◽  
Mirela Imre ◽  
...  

The aim of this study was to assess the presence and antimicrobial susceptibility profile of the molecularly serogrouped Listeria monocytogenes isolates in different animal origin food products, collected from a county situated in the historical region of Transylvania, Central Romania. A total of 7.7% (17/221) of the screened samples were positive for L. monocytogenes , with an isolation frequency of 6.2% (8/130) in the ready-to-eat products (i.e., sausages, ham and smoked specialties), 12.8% (6/47) in raw meat (i.e., minced pork, pork organs and snails), and 6.8% (3/44) in dairy (i.e., assortment of cheeses) samples. The identified L. monocytogenes serogroups were: 1/2a-3a (47.1%), 4b-4d-4e (29.4%), 1/2c-3c (11.8%), and 4a-4c (11.8%), respectively. All isolates were resistant to benzylpenicillin and fusidic acid. Resistance was also detected towards oxacillin (88.2%), fosfomycin (82.4%), clindamycin (76.5%), imipenem (52.9%), ciprofloxacin (41.2%), rifampicin (41.2%), trimethoprim – sulfamethoxazole (29.4%) and tetracycline (29.4%). On the other hand, all isolates proved susceptible to gentamicin, moxifloxacin, teicoplanin, vancomycin, tigecycline, erythromycin and linezolid. All tested strains exhibited multidrug resistance, resulting in the expression of a total of 12 resistance profiles. These findings extend the understanding about the spread of an important pathogen in Romanian food products, highlighting a substantial public health issue and medical concern, especially for consumers with a compromised health status.



2019 ◽  
Vol 95 (9) ◽  
pp. 873-878
Author(s):  
Ekaterina V. Fedorenko ◽  
N. D. Kolomiets ◽  
S. I. Sychik

Food-borne infectious diseases remain an actual problem of health care. In the Republic of Belarus the level of food-borne diseases persists to be stable, at the same time these diseases remain to be significant. Despite the insignificant number of nonconforming food samples the prevalence rates of food-borne acute infectious diseases of various etiology with dominantly food transmission pathway remain to be rather high. The mentioned fact determines the need for the development of approaches on the security of microbiological food safety based on the risk analysis. There are determined criteria for a hygienic assessment of the microbiological hazards (associated with the pathogen, food products and a consumer health state), there is presented the classification offood products in dependence on the grade of microbiological risk. There was performed the comparative analysis of requirements for the microbiological safety of food accepted in the Republic of Belarus and European Economic Union, in the European Union and at the international level, which testify to the presence of separate differences. Based on the international approaches there was substantiated the multilevel control system of management of microbiological risks, there is reported the characteristic of separate criteria. There are determined the directions of the improvement of the security of microbiological safety of food.



2017 ◽  
Vol 73 (12) ◽  
Author(s):  
Nadezhda Pavlovna Shevchenko ◽  
Marina Vasilevna Kaledina ◽  
Lyudmila Viktorovna Voloschenko ◽  
Alexander Ivanovich Shevchenko ◽  
Inna Alekseevna Baidina


Author(s):  
S. R. Warke ◽  
V. C. Ingle ◽  
N. V. Kurkure ◽  
P. A. Tembhurne ◽  
Minakshi Prasad ◽  
...  

Listeria monocytogenes, an opportunistic food borne pathogen can cause serious infections in immunocompromised individuals. L. monocytogenes is capable of producing biofilm on the surface of food processing lines and instruments.The biofilm transfers contamination to food products and impose risk to public health. In the present study biofilm producing ability of L. monocytogenes isolates were investigated phenotypically and genotypically by microtiter assay and multiplex PCR, respectively. Out of 38 L. monocytogenes isolates 14 were recovered from animal clinical cases, 12 bovine environment and 12 from milk samples. A total of 3 (21.42%) clinical, 2 (16.66%) environment and 3 (25%) milk samples respectively, revealed biofilm production in microtiter assay. Cumulative results showed that 23 (60.52%) out of 38 strains of L. monocytogenes were positive for luxS and flaA gene and 1 (2.63%) was positive only for the flaA gene.



Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1484
Author(s):  
Felice Panebianco ◽  
Selene Rubiola ◽  
Francesco Chiesa ◽  
Tiziana Civera ◽  
Pierluigi Aldo Di Ciccio

Among food-borne pathogens, Listeria monocytogenes continues to pose concerns to food business operators due to its capacity to form biofilm in processing environments. Ozone may be an eco-friendly technology to control microbial contaminations, but data concerning its effect on Listeria monocytogenes biofilm are still limited. In this study, the effect of gaseous ozone at 50 ppm on planktonic cells and biofilm of reference and food-related Listeria monocytogenes strains was evaluated. Ozone caused a reduction in microbial loads of 3.7 ± 0.4 and 3.9 ± 0.4 Log10 CFU/mL after 10 and 30 min, respectively. A complete inactivation of planktonic cells after 6 h of treatment was observed. Biofilm inhibition and eradication treatments (50 ppm, 6 h) resulted in a significant decrease of the biofilm biomass for 59% of the strains tested, whilst a slight dampening of live cell loads in the biofilm state was observed. In conclusion, gaseous ozone is not sufficient to completely counteract Listeria monocytogenes biofilm, but it may be useful as an additional tool to contrast Listeria monocytogenes free-living cells and to improve the existing sanitization procedures in food processing environments.



Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 881
Author(s):  
Roberta Tolve ◽  
Fernanda Galgano ◽  
Nicola Condelli ◽  
Nazarena Cela ◽  
Luigi Lucini ◽  
...  

The nutritional quality of animal products is strongly related to their fatty acid content and composition. Nowadays, attention is paid to the possibility of producing healthier foods of animal origin by intervening in animal feed. In this field, the use of condensed tannins as dietary supplements in animal nutrition is becoming popular due to their wide range of biological effects related, among others, to their ability to modulate the rumen biohydrogenation and biofortify, through the improvement of the fatty acids profile, the derivate food products. Unfortunately, tannins are characterized by strong astringency and low bioavailability. These disadvantages could be overcome through the microencapsulation in protective matrices. With this in mind, the optimal conditions for microencapsulation of a polyphenolic extract rich in condensed tannins by spray drying using a blend of maltodextrin (MD) and gum Arabic (GA) as shell material were investigated. For this purpose, after the extract characterization, through spectrophotometer assays and ultra-high-performance liquid chromatography-quadrupole time-of-flight (UHPLC-QTOF) mass spectrometry, a central composite design (CCD) was employed to investigate the combined effects of core:shell and MD:GA ratio on the microencapsulation process. The results obtained were used to develop second-order polynomial regression models on different responses, namely encapsulation yield, encapsulation efficiency, loading capacity, and tannin content. The formulation characterized by a core:shell ratio of 1.5:5 and MD:GA ratio of 4:6 was selected as the optimized one with a loading capacity of 17.67%, encapsulation efficiency of 76.58%, encapsulation yield of 35.69%, and tannin concentration of 14.46 g/100 g. Moreover, in vitro release under varying pH of the optimized formulation was carried out with results that could improve the use of microencapsulated condensed tannins in animal nutrition for the biofortification of derivates.



Sign in / Sign up

Export Citation Format

Share Document