scholarly journals Prospective Study in Children with Complicated Urinary Tract Infection Treated with Autologous Bacterial Lysates

2021 ◽  
Vol 9 (9) ◽  
pp. 1811
Author(s):  
Ulises Hernández-Chiñas ◽  
María E. Chávez-Berrocal ◽  
Ricardo E. Ahumada-Cota ◽  
Armando Navarro-Ocaña ◽  
Luz M. Rocha-Ramírez ◽  
...  

Antimicrobial bacteria resistance is an important problem in children with recurrent urinary tract infections (rUTI), thus it is crucial to search for alternative therapies. Autologous bacterial lysates (ABL) may be a potential treatment for rUTI. Twenty-seven children with rUTI were evaluated for one year, urine and stool cultures were performed, 10 colonies of each culture were selected and those identified as Escherichia coli were characterized by serology. For patients who presented ≥105 UFC/mL, an ABL was manufactured and administered orally (1 mL/day) for a month. Twelve children were monitored for ≥1-year, 218 urine and 11 stool samples were analyzed. E. coli (80.5%) was the main bacteria isolated from urine and feces (72%). E. coli of classical urinary serotypes (UPEC), O25:H4, O75:HNM, and O9:HNM were identified in patients with persistent urinary infection (pUTI). In 54% of patients treated with ABL, the absence of bacteria was observed in urine samples after 3 months of treatment, 42% of these remained without UTI between 10–12 months. It was observed that the use of ABL controlled the infection for almost 1 year in more than 60% of the children. We consider it necessary to develop a polyvalent immunogen for the treatment and control of rUTI.

Pathogens ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 102
Author(s):  
Ricardo E. Ahumada-Cota ◽  
Ulises Hernandez-Chiñas ◽  
Feliciano Milián-Suazo ◽  
María E. Chávez-Berrocal ◽  
Armando Navarro-Ocaña ◽  
...  

Urinary tract infection (UTI) is a relevant public health problem, economically and socially affecting the lives of patients. The increase of antimicrobial bacterial resistance significantly hinders the treatment of UTIs, raising the need to search for alternative therapies. Bacterial lysates (BL) obtained from Escherichia coli and other pathogens have been used to treat different infectious diseases with promising results. This work aims to evaluate the effect and composition of an autologous BL for the treatment and control of recurrent UTIs in adults. The results show remission in 70% of the patients within the first three months after the administration of BL, while the infection is maintained under control for 6–12 months. The analysis by liquid chromatography–mass spectrometry (LC-MS) of the BL fractions recognized by the sera of patients shows the presence of cytosolic proteins, fimbriae, OMPs, and LPS. Our study demonstrates that the autologous BL contributed to the treatment and control of recurrent UTIs in adults, and its composition shows that different surface components of E. coli are potential immunogens that could be used to create a polyvalent protective vaccine.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S532-S533
Author(s):  
Changseung Liu ◽  
Eun-Jeong Yoon ◽  
Dokyun Kim ◽  
Jong Hee Shin ◽  
Jeong Hwan Shin ◽  
...  

Abstract Background Korean Antimicrobial Surveillance System (Kor-GLASS) was established in 2016, which is compatible with the Global Antimicrobial Resistance Surveillance System launched by WHO. Here, we report a one-year assessment of Kor-GLASS in 2017, focusing on the antimicrobial resistance of urine isolates. Methods Non-duplicated clinical isolates of E. coli and K. pneumoniae recovered from urine cultures were collected from 8 sentinel hospitals. Demographic information, infection origin (hospital origin or community origin), and admission type were investigated. Bacterial species were confirmed using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer. Antimicrobial susceptibility was tested by disk diffusion and broth microdilution methods. Results During the one-year period of surveillance from January 2017 to December 2017, a total of 9,130 (11.9%) isolates of target pathogens were recovered from urine specimens of 76,625 patients with suspected urinary tract infection (UTI). The rate of culture-positive was the highest in the < 1 age group (AG) (22.5%), stiffly decreased in the 5–<15 AG to 3.4%, and gradually increased with age up to 19.6% in the ≥ 85 AG. The mean occurrence of UTI per 10,000 patient-days for inpatients was 19.3 (range, 3.4–46.1) for E. coli and 4.0 (range, 1.5–7.3) for K. pneumoniae. Resistance rate for cefotaxime was higher than those for ceftazidime both in E. coli (31.3% vs. 10.3%) and K. pneumoniae isolates (39.0% vs. 29.8%). Resistance rate for ciprofloxacin in E. coli isolates was 40.9%, and that in K. pneumoniae isolates was 31.9%. Only 4.9% and 10.9% of E. coli and K. pneumoniae isolates exhibited resistance phenotype to cefoxitin, respectively. Ertapenem-resistance was more frequently identified in K. pneumoniae isolates (1.6%) than in E. coli isolates (0.1%). Multidrug-resistance (MDR) phenotype was identified in 61.4% of the E. coli and 44.8% of K. pneumoniae urine isolates. Conclusion Kor-GLASS generated well-curated surveillance data devoid of collection bias or isolate duplication. Cefoxitin was an alternative treatment to ciprofloxacin for urinary tract infections caused by Enterobacteriaceae. About one-half of urine isolates belonged to either MDR or XDR. Disclosures All authors: No reported disclosures.


2019 ◽  
Vol 8 (7) ◽  
pp. 988 ◽  
Author(s):  
Jonas Abo Basha ◽  
Matthias Kiel ◽  
Dennis Görlich ◽  
Katharina Schütte-Nütgen ◽  
Anika Witten ◽  
...  

Urinary tract infection (UTI), frequently caused by uropathogenic Escherichia coli (UPEC), is the most common infection after kidney transplantation (KTx). Untreated, it can lead to urosepsis and impairment of the graft function. We questioned whether the UPEC isolated from KTx patients differed from the UPEC of non-KTx patients. Therefore, we determined the genome sequences of 182 UPEC isolates from KTx and control patients in a large German university clinic and pheno- and genotypically compared these two isolated groups. Resistance to the β-lactams, trimethoprim or trimethoprim/sulfamethoxazole was significantly higher among UPEC from KTx than from control patients, whereas both the isolated groups were highly susceptible to fosfomycin. Accordingly, the gene content conferring resistance to β-lactams or trimethoprim, but also to aminoglycosides, was significantly higher in KTx than in control UPEC isolates. E. coli isolates from KTx patients more frequently presented with uncommon UPEC phylogroups expressing higher numbers of plasmid replicons, but interestingly, less UPEC virulence-associated genes than the control group. We conclude that there is no defining subset of virulence traits for UPEC from KTx patients. The clinical history and immunocompromised status of KTx patients enables E. coli strains with low uropathogenic potential, but with increased antibiotic resistance to cause UTIs.


2018 ◽  
pp. 100-108
Author(s):  
Dinh Khanh Le ◽  
Dinh Dam Le ◽  
Khoa Hung Nguyen ◽  
Xuan My Nguyen ◽  
Minh Nhat Vo ◽  
...  

Objectives: To investigate clinical characteristics, bacterial characteristics, drug resistance status in patients with urinary tract infections treated at Department of Urology, Hue University Hospital. Materials and Method: The study was conducted in 474 patients with urological disease treated at Department of Urology, Hue Universiry Hospital from July 2017 to April 2018. Urine culture was done in the patients with urine > 25 Leu/ul who have symptoms of urinary tract disease or infection symptoms. Patients with positive urine cultures were analyzed for clinical and bacterial characteristics. Results: 187/474 (39.5%) patients had symptoms associated with urinary tract infections. 85/474 (17.9%) patients were diagnosed with urinary tract infection. The positive urine culture rate was 45.5%. Symptoms of UTI were varied, and no prominent symptoms. E. coli accounts for the highest proportion (46.67%), followed by, Staphycoccus aureus (10.67%), Pseudomonas aeruginsa (8,0%), Streptococcus faecali and Proteus (2.67%). ESBL - producing E. coli was 69.23%, ESBL producing Enterobacter spp was 33.33%. Gram-negative bacteria are susceptible to meropenem, imipenem, amikacin while gram positive are vancomycin-sensitive. Conclusions: Clinical manifestations of urinary tract infections varied and its typical symptoms are unclear. E.coli is a common bacterium (46.67%). Isolated bacteria have a high rate of resistance to some common antibiotics especially the third generation cephalosporins and quinolones. Most bacteria are resistant to multiple antibiotics at the same time. Gram (+) bacteria are susceptible to vancomycin, and gram (-) bacteria are susceptible to cefoxitin, amikacin, and carbapenem. Key words: urinary tract infection


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S823-S823
Author(s):  
Kendra Foster ◽  
Linnea A Polgreen ◽  
Brett Faine ◽  
Philip M Polgreen

Abstract Background Urinary tract infections (UTIs) are one of the most common bacterial infections. There is a lack of large epidemiologic studies evaluating the etiologies of UTIs in the United States. This study aimed to determine the prevalence of different UTI-causing organisms and their antimicrobial susceptibility profiles among patients being treated in a hospital setting. Methods We used the Premier Healthcare Database. Patients with a primary diagnosis code of cystitis, pyelonephritis, or urinary tract infection and had a urine culture from 2009- 2018 were included in the study. Both inpatients and patients who were only treated in the emergency department (ED) were included. We calculated descriptive statistics for uropathogens and their susceptibilities. Multi-drug-resistant pathogens are defined as pathogens resistant to 3 or more antibiotics. Resistance patterns are also described for specific drug classes, like resistance to fluoroquinolones. We also evaluated antibiotic use in this patient population and how antibiotic use varied during the hospitalization. Results There were 640,285 individuals who met the inclusion criteria. Females make up 82% of the study population and 45% were age 65 or older. The most common uropathogen was Escherichia Coli (64.9%) followed by Klebsiella pneumoniae (8.3%), and Proteus mirabilis (5.7%). 22.2% of patients were infected with a multi-drug-resistant pathogen. We found that E. Coli was multi-drug resistant 23.8% of the time; Klebsiella pneumoniae was multi-drug resistant 7.4%; and Proteus mirabilis was multi-drug resistant 2.8%. The most common antibiotics prescribed were ceftriaxone, levofloxacin, and ciprofloxacin. Among patients that were prescribed ceftriaxone, 31.7% of them switched to a different antibiotic during their hospitalization. Patients that were prescribed levofloxacin and ciprofloxacin switched to a different antibiotic 42.8% and 41.5% of the time, respectively. Conclusion E. Coli showed significant multidrug resistance in this population of UTI patients that were hospitalized or treated within the ED, and antibiotic switching is common. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 9 (2) ◽  
pp. 310
Author(s):  
Masayuki Hashimoto ◽  
Yi-Fen Ma ◽  
Sin-Tian Wang ◽  
Chang-Shi Chen ◽  
Ching-Hao Teng

Uropathogenic Escherichia coli (UPEC) is a major bacterial pathogen that causes urinary tract infections (UTIs). The mouse is an available UTI model for studying the pathogenicity; however, Caenorhabditis elegans represents as an alternative surrogate host with the capacity for high-throughput analysis. Then, we established a simple assay for a UPEC infection model with C. elegans for large-scale screening. A total of 133 clinically isolated E. coli strains, which included UTI-associated and fecal isolates, were applied to demonstrate the simple pathogenicity assay. From the screening, several virulence factors (VFs) involved with iron acquisition (chuA, fyuA, and irp2) were significantly associated with high pathogenicity. We then evaluated whether the VFs in UPEC were involved in the pathogenicity. Mutants of E. coli UTI89 with defective iron acquisition systems were applied to a solid killing assay with C. elegans. As a result, the survival rate of C. elegans fed with the mutants significantly increased compared to when fed with the parent strain. The results demonstrated, the simple assay with C. elegans was useful as a UPEC infectious model. To our knowledge, this is the first report of the involvement of iron acquisition in the pathogenicity of UPEC in a C. elegans model.


2021 ◽  
Vol 11 (9) ◽  
pp. 4315
Author(s):  
Emanuel Vamanu ◽  
Laura Dorina Dinu ◽  
Cristina Mihaela Luntraru ◽  
Alexandru Suciu

Bioactive compounds and phenolic compounds are viable alternatives to antibiotics in recurrent urinary tract infections. This study aimed to use a natural functional product, based on the bioactive compounds’ composition, to inhibit the uropathogenic strains of Escherichia coli. E. coli ATCC 25922 was used to characterize the IVCM (new in vitro catheterization model). As support for reducing bacterial proliferation, the cytotoxicity against a strain of Candida albicans was also determined (over 75% at 1 mg/mL). The results were correlated with the analysis of the distribution of biologically active compounds (trans-ferulic acid-268.44 ± 0.001 mg/100 g extract and an equal quantity of Trans-p-coumaric acid and rosmarinic acid). A pronounced inhibitory effect against the uropathogenic strain E. coli 317 (4 log copy no./mL after 72 h) was determined. The results showed a targeted response to the product for tested bacterial strains. The importance of research resulted from the easy and fast characterization of the functional product with antimicrobial effect against uropathogenic strains of E. coli. This study demonstrated that the proposed in vitro model was a valuable tool for assessing urinary tract infections with E. coli.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1348
Author(s):  
Lívia Slobodníková ◽  
Barbora Markusková ◽  
Michal Kajsík ◽  
Michal Andrezál ◽  
Marek Straka ◽  
...  

Urinary tract infections (UTIs) are among the events that most frequently need medical intervention. Uropathogenic Escherichia coli are frequently their causative agents and the infections are sometimes complicated by the presence of polyresistant nosocomial strains. Phage therapy is a tool that has good prospects for the treatment of these infections. In the present study, we isolated and characterized two bacteriophages with broad host specificity against a panel of local uropathogenic E. coli strains and combined them into a phage cocktail. According to genome sequencing, these phages were closely related and belonged to the Tequatrovirus genus. The newly isolated phages showed very good activity on a panel of local clinical E. coli strains from urinary tract infections. In the form of a two-phage cocktail, they were active on E. coli strains belonging to phylogroups B2 and D, with relatively lower activity in B1 and no response in phylogroup A. Our study is a preliminary step toward the establishment of a national phage bank containing local, well-characterized phages with therapeutic potential for patients in Slovakia.


2010 ◽  
Vol 5 (6) ◽  
pp. 827-830
Author(s):  
Georgi Slavchev ◽  
Nadya Markova

AbstractUropathogenic strains of E. coli isolated from urine of patients with urinary tract infections were tested for antibiotic sensitivity using bio-Merieux kits and ATB-UR 5 expression system. The virulence of strains was evaluated by serum bactericidal assay, macrophage “killing” and bacterial adhesive tests. Survival capability of strains was assessed under starvation in saline. The results showed that quinolone-resistant uropathogenic strains of E. coli exhibit significantly reduced adhesive potential but relatively high resistance to serum and macrophage bactericidity. In contrast to laboratory strains, the quinolone-resistant uropathogenic clinical isolate demonstrated increased viability during starvation in saline. Our study suggests that quinolone-resistant uropathogenic strains are highly adaptable clones of E. coli, which can exhibit compensatory viability potential under unfavorable conditions. The clinical occurrence of such phenotypes is likely to contribute to the survival, persistence and spread strategy of resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document