scholarly journals Isolation and Characterization of Outer Membrane Vesicles of Pectobacterium brasiliense 1692

2021 ◽  
Vol 9 (9) ◽  
pp. 1918
Author(s):  
Silindile Maphosa ◽  
Lucy Novungayo Moleleki

Pectobacterium brasiliense (Pbr) 1692 is an aggressive phytopathogen affecting a broad host range of crops and ornamental plants, including potatoes. Previous research on animal pathogens, and a few plant pathogens, revealed that Outer Membrane Vesicles (OMVs) are part of Gram-negative bacteria’s (GNB) adaptive toolkit. For this reason, OMV production and subsequent release from bacteria is a conserved process. Therefore, we hypothesized that OMVs might transport proteins that play a critical role in causing soft rot disease and in the survival and fitness of Pbr1692. Here, we show that the potato pathogen, Pbr1692, releases OMVs of various morphologies in Luria Bertani media at 31 °C. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) confirmed the production of OMVs by Pbr1692 cells. Transmission Electron Microscopy showed that these exist as chain-, single-, and double-membrane morphologies. Mass spectrometry followed by Gene Ontology, Clusters of Orthologous Groups, Virulence Factor, CAZymes, Antibiotic Resistance Ontology, and Bastion6 T6SE annotations identified 129 OMV-associated proteins with diverse annotated roles, including antibiotic stress response, virulence, and competition. Pbr1692 OMVs contributed to virulence in potato tubers and elicited a hypersensitive response in Nicotiana benthamiana leaves. Furthermore, Pbr1692 OMVs demonstrated antibacterial activity against Dickeya dadantii.

2020 ◽  
Author(s):  
Aël Hardy ◽  
Vikas Sharma ◽  
Larissa Kever ◽  
Julia Frunzke

AbstractStreptomyces are well-known antibiotic producers, and are also characterized by a complex morphological differentiation. Streptomyces, like all bacteria, are confronted with the constant threat of phage predation, which in turn shapes bacterial evolution. However, despite significant sequencing efforts recently, relatively few phages infecting Streptomyces have been characterized compared to other genera. Here, we present the isolation and characterization of five novel Streptomyces phages. All five phages belong to the Siphoviridae family, based on their morphology as determined by transmission electron microscopy. Genome sequencing revealed that four of them were temperate phages, while one had a lytic lifestyle. Moreover, one of the newly sequenced phages shows very little homology to already described phages, highlighting the still largely untapped viral diversity. Altogether, this study expands the number of characterized phages of Streptomyces and sheds light on phage evolution and phage-host dynamics in Streptomyces.


2017 ◽  
Vol 4 (1) ◽  
pp. 31-36
Author(s):  
Pradeep Singh ◽  
B. R. Venugopal ◽  
Radha Kamalakaran

Physical properties of the polymer can be altered by mixing one or more polymers together also known as polymer blending. The miscibility of polymers is a key parameter in determining the properties of polymer blend. Conventional transmission electron microscopy (CTEM) plays a critical role in determining the miscibility and morphology of the polymers in blend system. One of the most difficult part in polymer microscopy is the staining by heavy metals to generate contrast in CTEM. RuO4 and OsO4 are commonly used to stain the polymer materials for CTEM imaging. CTEM imaging is difficult to interpret for blends due to lack of clear distinction in contrast. Apart from having difficulty in contrast generation, staining procedures are extremely dangerous as improper handling could severely damage skin, eyes, lungs etc. We have used scanning transmission electron microscopy (STEM) to image polymer blends without any staining processes. In current work, Acrylonitrile Butadiene Styrene (ABS)/Methacrylate Butadiene Styrene (MBS) and Styrene Acrylonitrile (SAN) along with filler additive were dispersed on Polycarbonate (PC) matrix and studied by STEM/HAADF (high angle annular dark field). By using HAADF, contrast was generated through molecular density difference to differentiate components in the blend.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 412-412
Author(s):  
Rami Khoriaty ◽  
Lesley Everett ◽  
Jennifer Chase ◽  
Guojing Zhu ◽  
Bin Zhang ◽  
...  

Abstract LMAN1 and MCFD2 encode the components of a mammalian cargo-receptor that facilitates the ER-to-Golgi transport of coagulation factors V (FV) and VIII (FVIII) for secretion to the plasma. Mutations in LMAN1 or MCFD2 result in a rare bleeding disorder known as combined deficiency of coagulation factors V and VIII (F5F8D), characterized by FV and FVIII levels that are ~10% of normal. No other clinical phenotypes are known in human patients. Lman1 null mice have ~50% of normal FV and FVIII levels and exhibit a partially penetrant, perinatal lethality, suggesting a critical role for yet unknown LMAN1 secretory cargo(s). To further characterize the function of the LMAN1/MCFD2 complex and identify new cargos, we generated several murine models of F5F8D, including ubiquitous null Lman1 (Lman1-/-) and Mcfd2 (Mcfd2-/-) mice maintained on a C57BL/6J genetic background. Adult Lman1-/- mice were mildly thrombocytopenic, exhibiting a 25% decrease in platelet count relative to wild-type (WT) mice (9.3 x 105 vs. 12.3 x 105 cells/uL, p < 0.004), but no other CBC abnormalities. In contrast, Lman1 heterozygous and Mcfd2-/- mice exhibited normal platelet counts. To further explore the role of LMAN1 in megakaryocyte/platelet development or survival, bone marrow (BM) histology and platelet transmission electron microscopy were performed. Lman1-/-mice had no platelet morphologic abnormalities by light or transmission electron microscopy, as well as normal number and morphology of BM megakaryocytes. Hematopoietic stem cells and megakaryocyte progenitors were indistinguishable between WT and Lman1-/- mice by flow cytometry. In order to determine whether the thrombocytopenia phenotype results from LMAN1 deficiency specifically in the hematopoietic compartment, mice with tissue-specific knockout of Lman1 in hematopoietic and endothelial cells (Tie2-Cre) were generated. Platelet counts of mice with LMAN1 deficiency restricted to the hematopoietic compartment were indistinguishable from those in WT controls. In contrast, hepatocyte-specific (Alb-Cre) Lman1 deficiency, resulted in significant thrombocytopenia relative to WT controls (p < 0.017), with platelet counts comparable to those observed in ubiquitous Lman1 null mice. Since thrombopoietin (TPO) is a major hepatocyte-derived regulator of platelet synthesis, plasma TPO levels were measured by ELISA in ubiquitous Lman1 and Mcfd2 null mice. Plasma TPO levels in Lman1-/- mice were ~56% lower than those in WT levels (128.7 x 103 vs. 229.5 x 103 pg/mL, p < 0.0025). However, TPO levels were not reduced in Mcfd2-/- mice (p > 0.17). TPO mRNA expression in the liver of Lman1-/-mice was indistinguishable from livers of WT littermate controls. In conclusion, global LMAN1-deficient and hepatocyte-specific LMAN1 deficient mice exhibit thrombocytopenia, a phenotype not previously reported in F5F8D patients. Lman1-/- mice, but not Mcfd2-/- mice, exhibit low plasma TPO levels, suggesting that TPO may be a novel LMAN1-dependent secretory cargo. These results raise the possibility that F5F8D patients with LMAN1 mutations may have mild thrombocytopenia, previously unappreciated as a result of the small number of F5F8D patients and the wide range of clinically normal platelet counts. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 27 ◽  
Author(s):  
Abbas Rami ◽  
Fatemeh Kazemi-Lomedasht ◽  
Ali Mirjalili ◽  
Mojtaba Noofeli ◽  
Fereshteh Shahcheraghi ◽  
...  

Background: Outer membrane vesicles (OMVs) release from Gram-negative bacteria and are interesting alternatives that can replace those vaccines that contain naturally incorporated bacterial surface antigens, lipopolysaccharides (LPS) and outer membrane proteins (OMPs). Nanoparticles can be used to encapsulate vesicles for slow release and prevent macromolecular degradation. Objective: Therefore, encapsulation of OMVs of B. pertussis into sodium alginate nanoparticles was the main aim of the current study. Method: The OMVs of B. pertussis extracted and characterized by particle sizer, electron microscopy, SDSPAGE and Western blot assays. The extracted OMVs were encapsulated in sodium alginate nanoparticles (OMV-NP) using unique gelation process and injected into BALB/c mice. Immunogenicity indices such as different classes of antibodies and interleukins related to different T cell lines were evaluated in immunized mice by ELISA. The respiratory challenge was evaluated in the groups of mice. The existence of pertussis toxin (PTX), filamentous haemagglutinin (FHA) and PRN (pertactin) in B. pertussis OMVs was verified using SDS-PAGE and Western blot analysis. Results: TEM electron microscopy showed the size of these OMVs to be around 20-80 nm. The OMVs with appropriate quality were encapsulated into sodium alginate nanoparticles (OMV-NP), and the final size was about 500 nm after encapsulation. Immunity indices were significantly higher in the OMV-NP receiving group. In challenge tests, the OMV-NP vaccine was able to show the highest rate of lung clearance compared to the control groups (OMV and wPV) at the lowest injection dose. Conclusion: The results indicate the potential of OMV-NP as a novel vaccine delivery system.


2017 ◽  
Vol 6 (1) ◽  
pp. 47-55
Author(s):  
Tomomi Kuwana

AbstractMitochondrial outer membrane permeabilization (MOMP) is a critical step in apoptosis, the molecular mechanisms of which have been a subject of intensive study. This process is important for therapeutic intervention in various diseases, such as cancer. Pro-apoptotic Bax and Bak are functionally redundant and structurally homologous. When activated at the mitochondrial outer membrane, they cause the membrane to permeabilize and release apoptogenic proteins from the intermembrane space. To unravel the molecular mechanisms of this unique and important event, we systematically reduced the experimental system. Simple outer membrane vesicles and liposomes recapitulated many features of MOMP. Although conventional transmission electron microscopy could not detect any membrane changes during MOMP in these vesicles, cryo-electron microscopy successfully revealed Bax-induced delicate pores, owing to its ability to preserve native, hydrated membrane structure. The data are consistent with the idea that Bax is unfolded and embedded in the bilayer and deforms the membrane to form a large pore. Together with the biochemical and structure data in the literature, we now have more comprehensive models of the key function of Bax. We hope that new tools, such as lipid nanodiscs, will give us an atomic-level resolution and finally solve Bax structure in the membrane, where it functions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nicolás Baeza ◽  
Lidia Delgado ◽  
Jaume Comas ◽  
Elena Mercade

Shewanella vesiculosa M7T is a cold-adapted Antarctic bacterium that has a great capacity to secrete membrane vesicles (MVs), making it a potentially excellent model for studying the vesiculation process. S. vesiculosa M7T undergoes a blebbing mechanism to produce different types of MVs, including outer membrane vesicles and outer-inner membrane vesicles (O-IMVs). More recently, other mechanisms have been considered that could lead to the formation of O-IMVs derived from prophage-mediated explosive cell lysis in other bacteria, but it is not clear if they are of the same type. The bacterial growth phase could also have a great impact on the type of MVs, although there are few studies on the subject. In this study, we used high-resolution flow cytometry, transmission electron microscopy, and cryo-electron microscopy (Cryo-EM) analysis to determine the amount and types of MVs S. vesiculosa M7T secreted during different growth phases. We show that MV secretion increases during the transition from the late exponential to the stationary phase. Moreover, prophage-mediated explosive cell lysis is activated in S. vesiculosa M7T, increasing the heterogeneity of both single- and double-layer MVs. The sequenced DNA fragments from the MVs covered the entire genome, confirming this explosive cell lysis mechanism. A different structure and biogenesis mechanisms for the explosive cell lysis-derived double-layered MVs was observed, and we propose to name them explosive O-IMVs, distinguishing them from the blebbing O-IMVs; their separation is a first step to elucidate their different functions. In our study, we used for the first time sorting by flow cytometry and Cryo-EM analyses to isolate bacterial MVs based on their nucleic acid content. Further improvements and implementation of bacterial MV separation techniques is essential to develop more in-depth knowledge of MVs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Teresa Tiffert ◽  
Virgilio L. Lew

The preparation of plasma membrane vesicles from a large variety of cells has contributed a wealth of information on the identity and vectorial properties of membrane transporters and enzymes. Vesicles from red blood cell (RBC) membranes are generated in media of extremely low tonicity. For functional studies, it is required to suspend the vesicles in higher tonicity media in order to bring the concentrations of the substrates of transporters and enzymes under investigation within the physiological ranges. We investigated the effects of hypertonic transitions on the vesicle morphology using transmission electron microscopy. The results show that hypertonic transitions cause an irreversible osmotic collapse of sealed membrane vesicles. Awareness of the collapsed condition of vesicles during functional studies is critical for the proper interpretation of experimental results.


Author(s):  
M.J. Mills

The fine structure of dislocations plays a critical role in determining the macroscopic mechanical behavior Intermetallic compounds. Many of the technologically important characteristics of these compounds, an example their strength at high temperatures, appear to be determined by intricate details of dislocation stucture at the atomic level. High resolution transmission electron microscopy (HREM) offers the etential to obtain structural information at this level by observing these line defects in an "end-on" configuration.Samples of HREM images of several important dislocation types in Ni3Al and TiAl are shown in Figures through 3. Each of these particular dislocation types (i.e. Burgers vectors and line directions) tend to be longly favored in these compounds, indicating that along these line directions the dislocations are likely have either low mobility or low energy.


2001 ◽  
Vol 67 (1) ◽  
pp. 251-259 ◽  
Author(s):  
Shirley A. Walker ◽  
Todd R. Klaenhammer

ABSTRACT A novel system that leaks β-galactosidase (β-gal) without a requirement for secretion or export signals was developed inLactococcus lactis by controlled expression of integrated phage holin and lysin cassettes. The late promoter of the lytic lactococcal bacteriophage φ31 is an 888-bp fragment (P15A10) encoding the transcriptional activator. When a high-copy-number P15A10::lacZ.stfusion was introduced into L. lactis strains C10, ML8, NCK203, and R1/r1t, high levels of the resultant β-gal activity were detected in the supernatant (approximately 85% of the total β-gal activity for C10, ML8, and NCK203 and 45% for R1/r1t). Studies showed that the phenotype resulted from expression of Tac31A from the P15A10 fragment, which activated a homologous late promoter in prophages harbored by the lactococcal strains. Despite the high levels of β-gal obtained in the supernatant, the growth of the strains was not significantly affected, nor was there any evidence of severe membrane damage as determined by using propidium iodide or transmission electron microscopy. Integration of the holin-lysin cassette of phage r1t, under the control of the phage φ31 late promoter, into the host genome of MG1363 yielded a similar “leaky” phenotype, indicating that holin and lysin might play a critical role in the release of β-gal into the medium. In addition to β-gal, tetanus toxin fragment C was successfully delivered into the growth medium by this system. Interestingly, the X-prolyl dipeptidyl aminopeptidase PepXP (a dimer with a molecular mass of 176 kDa) was not delivered at significant levels outside the cell. These findings point toward the development of bacterial strains able to efficiently release relevant proteins and enzymes outside the cell in the absence of known secretion and export signals.


1989 ◽  
Vol 169 ◽  
Author(s):  
M. Grant Norton ◽  
Lisa A. Tietz ◽  
Scott R. Summerfelt ◽  
C. Barry Carter

AbstractThe fabrication of high quality thin films often depends on the early stages of the growth process during which epitaxy is established. The substrate surface structure generally plays a critical role at this stage. Many observations of the high‐Tc superconductor film‐substrate interface structure and chemistry have been made by transmission electron microscopy (TEM) of cross‐section samples. Ion‐milling induced damage, however, can be severe in these specimens. In the present study, the early stages of the growth of high Tc superconducting thin films of YBa2Cu3O7&#X03B4; have been studied by TEM using a technique which requires no post‐deposition specimen preparation.


Sign in / Sign up

Export Citation Format

Share Document