scholarly journals Toxoplasmosis: Current and Emerging Parasite Druggable Targets

2021 ◽  
Vol 9 (12) ◽  
pp. 2531
Author(s):  
Rana El Hajj ◽  
Lina Tawk ◽  
Shaymaa Itani ◽  
Maguy Hamie ◽  
Jana Ezzeddine ◽  
...  

Toxoplasmosis is a prevalent disease affecting a wide range of hosts including approximately one-third of the human population. It is caused by the sporozoan parasite Toxoplasma gondii (T. gondii), which instigates a range of symptoms, manifesting as acute and chronic forms and varying from ocular to deleterious congenital or neuro-toxoplasmosis. Toxoplasmosis may cause serious health problems in fetuses, newborns, and immunocompromised patients. Recently, associations between toxoplasmosis and various neuropathies and different types of cancer were documented. In the veterinary sector, toxoplasmosis results in recurring abortions, leading to significant economic losses. Treatment of toxoplasmosis remains intricate and encompasses general antiparasitic and antibacterial drugs. The efficacy of these drugs is hindered by intolerance, side effects, and emergence of parasite resistance. Furthermore, all currently used drugs in the clinic target acute toxoplasmosis, with no or little effect on the chronic form. In this review, we will provide a comprehensive overview on the currently used and emergent drugs and their respective parasitic targets to combat toxoplasmosis. We will also abridge the repurposing of certain drugs, their targets, and highlight future druggable targets to enhance the therapeutic efficacy against toxoplasmosis, hence lessening its burden and potentially alleviating the complications of its associated diseases.

Author(s):  
_______ Archana ◽  
Charu Datta ◽  
Pratibha Tiwari

Degradation of environment is one of the most serious challenges before the mankind in today’s world. Mankind has been facing a wide range of problem arising out of the degradation of environment. Not only the areas under human inhabitation, but the areas of the planet without human population have also been suffering from these problems. As the population increase day by day, the amenities are not improved simultaneously. With the advancement of science and technologies the needs of human beings has been changing rapidly. As a result different types of environmental problems have been rising. Environmental degradation is a wide- reaching problem and it is likely to influence the health of human population is great. It may be defined the deterioration of the environment through depletion of resources such as air, water, and soil. The destruction of ecosystem and extinction of wildlife. Environmental degradation has occurred due to the recent activities in the field of socio-economic, institute and technology. Poverty still remains a problem as the root of several environmental problems to create awareness among the people about the ill effect of environmental pollution. In the whole research it is clear that all factors of environmental degradation may be reduced through- Framing the new laws on environmental degradation, Environment friend policy, Controlling all the ways and means of noise, air, soil and water pollution, Through growing more and more trees and by adapting the proper sanitation policy.  


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 225 ◽  
Author(s):  
Yuri Merizalde ◽  
Luis Hernández-Callejo ◽  
Oscar Duque-Perez ◽  
Víctor Alonso-Gómez

Wind power generation has been the fastest-growing energy alternative in recent years, however, it still has to compete with cheaper fossil energy sources. This is one of the motivations to constantly improve the efficiency of wind turbines and develop new Operation and Maintenance (O&M) methodologies. The decisions regarding O&M are based on different types of models, which cover a wide range of scenarios and variables and share the same goal, which is to minimize the Cost of Energy (COE) and maximize the profitability of a wind farm (WF). In this context, this review aims to identify and classify, from a comprehensive perspective, the different types of models used at the strategic, tactical, and operational decision levels of wind turbine maintenance, emphasizing mathematical models (MatMs). The investigation allows the conclusion that even though the evolution of the models and methodologies is ongoing, decision making in all the areas of the wind industry is currently based on artificial intelligence and machine learning models.


2020 ◽  
Vol 21 (2) ◽  
pp. 97-109 ◽  
Author(s):  
Ana P. dos Santos ◽  
Tamara G. de Araújo ◽  
Gandhi Rádis-Baptista

Venom-derived peptides display diverse biological and pharmacological activities, making them useful in drug discovery platforms and for a wide range of applications in medicine and pharmaceutical biotechnology. Due to their target specificities, venom peptides have the potential to be developed into biopharmaceuticals to treat various health conditions such as diabetes mellitus, hypertension, and chronic pain. Despite the high potential for drug development, several limitations preclude the direct use of peptides as therapeutics and hamper the process of converting venom peptides into pharmaceuticals. These limitations include, for instance, chemical instability, poor oral absorption, short halflife, and off-target cytotoxicity. One strategy to overcome these disadvantages relies on the formulation of bioactive peptides with nanocarriers. A range of biocompatible materials are now available that can serve as nanocarriers and can improve the bioavailability of therapeutic and venom-derived peptides for clinical and diagnostic application. Examples of isolated venom peptides and crude animal venoms that have been encapsulated and formulated with different types of nanomaterials with promising results are increasingly reported. Based on the current data, a wealth of information can be collected regarding the utilization of nanocarriers to encapsulate venom peptides and render them bioavailable for pharmaceutical use. Overall, nanomaterials arise as essential components in the preparation of biopharmaceuticals that are based on biological and pharmacological active venom-derived peptides.


2020 ◽  
Vol 12 ◽  
Author(s):  
Nihar Ranjan Biswal

Background: Surfactant adsorption at the interfaces (solid–liquid, liquid–air, or liquid–liquid) is receiving considerable attention from a long time due to its wide range of practical applications. Objective: Specifically wettability of solid surface by liquids is mainly measured by contact angle and has many practical importances where solid–liquid systems are used. Adsorption of surfactants plays an important role in the wetting process. The wetting behaviours of three plant-based natural surfactants (Reetha, Shikakai, and Acacia) on the glass surface are compared with one widely used nonionic synthetic surfactant (Triton X-100) and reported in this study. Methods: The dynamic contact angle study of three different types of plant surfactants (Reetha, Shikakai and Acacia) and one synthetic surfactant (Triton X 100) on the glass surface has been carried out. The effect of two different types of alcohols such as Methanol and amyl alcohol on wettability of shikakai, as it shows little higher value of contact angle on glass surface has been measured. Results: The contact angle measurements show that there is an increase in contact angle from 47° (pure water) to 67.72°, 65.57°, 68.84°, and 68.79° for Reetha, Acacia, Shikakai, and Triton X-100 respectively with the increase in surfactant concentration and remain constant at CMC. The change in contact angle of Shikakai-Amyl alcohol mixtures are slightly different than that of methanol-Shikakai mixture, mostly there is a gradual increase in contact angle with the increasing in alcohol concentration. Conclusion: There is no linear relationship between cos θ and inverse of surface tension. There was a linear increase in surface free energy results with increase in concentration as more surfactant molecules were adsorbing at the interface enhancing an increase in contact angle.


Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 645 ◽  
Author(s):  
Hamed K. Abbas ◽  
Nacer Bellaloui ◽  
Cesare Accinelli ◽  
James R. Smith ◽  
W. Thomas Shier

Charcoal rot disease, caused by the fungus Macrophomina phaseolina, results in major economic losses in soybean production in southern USA. M. phaseolina has been proposed to use the toxin (-)-botryodiplodin in its root infection mechanism to create a necrotic zone in root tissue through which fungal hyphae can readily enter the plant. The majority (51.4%) of M. phaseolina isolates from plants with charcoal rot disease produced a wide range of (-)-botryodiplodin concentrations in a culture medium (0.14–6.11 µg/mL), 37.8% produced traces below the limit of quantification (0.01 µg/mL), and 10.8% produced no detectable (-)-botryodiplodin. Some culture media with traces or no (-)-botryodiplodin were nevertheless strongly phytotoxic in soybean leaf disc cultures, consistent with the production of another unidentified toxin(s). Widely ranging (-)-botryodiplodin levels (traces to 3.14 µg/g) were also observed in the roots, but not in the aerial parts, of soybean plants naturally infected with charcoal rot disease. This is the first report of (-)-botryodiplodin in plant tissues naturally infected with charcoal rot disease. No phaseolinone was detected in M. phaseolina culture media or naturally infected soybean tissues. These results are consistent with (-)-botryodiplodin playing a role in the pathology of some, but not all, M. phaseolina isolates from soybeans with charcoal rot disease in southern USA.


2021 ◽  
Vol 11 (7) ◽  
pp. 3209
Author(s):  
Karla R. Borba ◽  
Didem P. Aykas ◽  
Maria I. Milani ◽  
Luiz A. Colnago ◽  
Marcos D. Ferreira ◽  
...  

Portable spectrometers are promising tools that can be an alternative way, for various purposes, of analyzing food quality, such as monitoring in a few seconds the internal quality during fruit ripening in the field. A portable/handheld (palm-sized) near-infrared (NIR) spectrometer (Neospectra, Si-ware) with spectral range of 1295–2611 nm, equipped with a micro-electro-mechanical system (MEMs), was used to develop prediction models to evaluate tomato quality attributes non-destructively. Soluble solid content (SSC), fructose, glucose, titratable acidity (TA), ascorbic, and citric acid contents of different types of fresh tomatoes were analyzed with standard methods, and those values were correlated to spectral data by partial least squares regression (PLSR). Fresh tomato samples were obtained in 2018 and 2019 crops in commercial production, and four fruit types were evaluated: Roma, round, grape, and cherry tomatoes. The large variation in tomato types and having the fruits from distinct years resulted in a wide range in quality parameters enabling robust PLSR models. Results showed accurate prediction and good correlation (Rpred) for SSC = 0.87, glucose = 0.83, fructose = 0.87, ascorbic acid = 0.81, and citric acid = 0.86. Our results support the assertion that a handheld NIR spectrometer has a high potential to simultaneously determine several quality attributes of different types of tomatoes in a practical and fast way.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1598
Author(s):  
Chih-Yu Chung ◽  
Yu-Ju Chen ◽  
Chia-Hui Kang ◽  
Hung-Yun Lin ◽  
Chih-Ching Huang ◽  
...  

Carbon quantum dots (CQDs) are emerging novel nanomaterials with a wide range of applications and high biocompatibility. However, there is a lack of in-depth research on whether CQDs can cause acute or long-term adverse reactions in aquatic organisms. In this study, two different types of CQDs prepared by ammonia citrate and spermidine, namely CQDAC and CQDSpd, were used to evaluate their biocompatibilities. In the fish embryo acute toxicity test (FET), the LD50 of CQDAC and CQDSpd was about 500 and 100 ppm. During the stage of eleutheroembryo, the LD50 decreased to 340 and 55 ppm, respectively. However, both CQDs were quickly eliminated from embryo and eleutheroembryo, indicating a lack of bioaccumulation. Long-term accumulation of CQDs was also performed in this study, and adult zebrafish showed no adverse effects in 12 weeks. In addition, there was no difference in the hatchability and deformity rates of offspring produced by adult zebrafish, regardless of whether they were fed CQDs or not. The results showed that both CQDAC and CQDSpd have low toxicity and bioaccumulation to zebrafish. Moreover, the toxicity assay developed in this study provides a comprehensive platform to assess the impacts of CQDs on aquatic organisms in the future.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 513
Author(s):  
Anna Rabajczyk ◽  
Maria Zielecka ◽  
Krzysztof Cygańczuk ◽  
Łukasz Pastuszka ◽  
Leszek Jurecki

A recent trend in the field of membrane research is the incorporation of nanoparticles into polymeric membranes, which could produce synergistic effects when using different types of materials. This paper discusses the effect of the introduction of different nanometals such as silver, iron, silica, aluminum, titanium, zinc, and copper and their oxides on the permeability, selectivity, hydrophilicity, conductivity, mechanical strength, thermal stability, and antiviral and antibacterial properties of polymeric membranes. The effects of nanoparticle physicochemical properties, type, size, and concentration on a membrane’s intrinsic properties such as pore morphology, porosity, pore size, hydrophilicity/hydrophobicity, membrane surface charge, and roughness are discussed, and the performance of nanocomposite membranes in terms of flux permeation, contaminant rejection, and antifouling capability are reviewed. The wide range of nanocomposite membrane applications including desalination and removal of various contaminants in water-treatment processes are discussed.


Mindfulness ◽  
2021 ◽  
Author(s):  
Karin Matko ◽  
Ulrich Ott ◽  
Peter Sedlmeier

Abstract Objectives Meditation is an umbrella term for a vast range of contemplative practices. Former proposals have struggled to do justice to this variety. To our knowledge, there is to date no comprehensive overview of meditation techniques spanning all major traditions. The present studies aimed at providing such a comprehensive list of meditation techniques. Methods In a qualitative study, we compiled a collection of 309 meditation techniques through a literature search and interviews with 20 expert meditators. Then, we reduced this collection to 50 basic meditation techniques. In a second, quantitative study, 635 experienced meditators from a wide range of meditative backgrounds indicated how much experience they had with each of these 50 meditation techniques. Results Meditators’ responses indicated that our choice of techniques had been adequate and only two techniques had to be added. Our additional statistical and cluster analyses illustrated preferences for specific techniques across and within diverse traditions as well as sets of techniques commonly practiced together. Body-centered techniques stood out in being of exceptional importance to all meditators. Conclusions In conclusion, we found an amazing variety of meditation techniques, which considerably surpasses previous collections. Our selection of basic meditation techniques might be of value for future scientific investigations and we encourage researchers to use this set.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 822
Author(s):  
Christine Thanner ◽  
Martin Eibelhuber

Ultraviolet (UV) Nanoimprint Lithography (NIL) is a replication method that is well known for its capability to address a wide range of pattern sizes and shapes. It has proven to be an efficient production method for patterning resist layers with features ranging from a few hundred micrometers and down to the nanometer range. Best results can be achieved if the fundamental behavior of the imprint resist and the pattern filling are considered by the equipment and process parameters. In particular, the material properties and pattern size and shape play a crucial role. For capillary force-driven filling behavior it is important to understand the influencing parameters and respective failure modes in order to optimize the processes for reliable full wafer manufacturing. In this work, the nanoimprint results obtained for different pattern geometries are compared with respect to pattern quality and residual layer thickness: The comprehensive overview of the relevant process parameters is helpful for setting up NIL processes for different nanostructures with minimum layer thickness.


Sign in / Sign up

Export Citation Format

Share Document