scholarly journals Characterization of the Heavy Mineral Suite in a Holocene Beach Placer, Barrytown, New Zealand

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 86
Author(s):  
Hannah C. Wells ◽  
Richard G. Haverkamp

The placer deposit at Barrytown, New Zealand, has been worked for gold and is known for high levels of ilmenite that has not been exploited. Other heavy minerals are present but have not been well characterized, which is the purpose of this research. Sand grains were separated into the density fractions and the heavier fractions analyzed by laser ablation ICP-MS for elemental composition and by scanning electron microscopy (SEM) EDS in whole grains and polished sections. Grain size distributions were determined from SEM images of polished grain mounts. Elemental associations have been identified with different minerals. A wide range of ore minerals, or potential useful industrial minerals, have been shown to be present largely as individual sand grains. These include gold, ilmenite, garnet, zircon, monazite, allanite, uraninite, thorite, cassiterite, wolframite, scheelite, and columbite. The ilmenite contains many inclusions, consisting of silicates and phosphates and 100–400 ppm Nb. Scandium is found to be present in zircon at 100–600 ppm along with 3000 ppm Y. Monazite is depleted in Eu relative to chondrite and contains Ga and Ge at 1000–3000 ppm. Because the sand grains are mostly individual minerals, it is suggested that separation may be possible using a combination of density, electrostatic and magnetic methods to obtain almost pure mineral fractions. This knowledge should inform decisions on potential exploitation of the resource.

2021 ◽  
pp. SP516-2021-59
Author(s):  
C. D. Standish ◽  
R. J. Chapman ◽  
N. R. Moles ◽  
R. D. Walshaw ◽  
J. A. Sheridan

AbstractCompositional studies of natural gold usually have a geological focus, but are also important in archaeological provenancing. Both methodologies rely on compositional comparison of two sets of samples, one of which is geographically constrained. Here we describe how experiences in gold characterization resulting from geological studies are relevant to archaeology. Microchemical characterization of polished sections of natural gold identifies alloy compositions, alloy heterogeneity and mineral inclusions. Gold from all deposit types shows Cu and Sn values much lower than those recorded during numerous studies of artefacts. Inclusions in artefact gold include various Cu- and Sn-bearing compounds which indicate specific high temperature reactions that could ultimately illuminate the conditions of (s)melting. The use of LA-ICP-MS to generate a wide range of elemental discriminants for provenance studies may be compromised by alloy adulteration and/or unrepresentative analysis of natural/artefact alloys, which are commonly highly heterogeneous at the micron scale. Geological studies normally characterize only the earliest-formed (hypogene) alloy, whereas archaeology-focussed studies should entail analyses of bulk alloy compositions and impurities that may be incorporated during (s)melting. Isotopic-based provenancing alleviates many of these problems but, to date, generates regional rather than locality specific targets. A dual isotopic-compositional approach is recommended.


Geosciences ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 467 ◽  
Author(s):  
Laura Bracciali

U-Pb dating by LA ICP-MS is one of the most popular and successful isotopic techniques available to the Earth Sciences to constrain timing and rates of geological processes thanks to its high spatial resolution, good precision (absolute U/Pb age resolution of ca. 2%, 2s), rapidity and relative affordability. The significant and continuous improvement of instrumentation and approaches has opened new fields of applications by extending the range of minerals that can be dated by this method. Following the development and distribution to the community of good quality reference materials in the last decade, rutile U-Pb thermochronology (with a precision only slightly worse than zircon) has become a commonly used method to track cooling of deep-seated rocks. Its sensitivity to mid- to low-crustal temperatures (~450 °C to 650 °C) is ideal to constrain exhumation in active and ancient orogens as well as thermal evolution of slow-cooled terranes. Recrystallization and secondary growth during metamorphism and the presence of grain boundary fluids can also affect the U-Pb isotopic system in rutile. A growing body of research focusing on U-Pb dating of rutile by LA ICP-MS is greatly improving our understanding of the behavior of this mineral with regards to retention of radiogenic Pb. This is key to fully exploit its potential as a tracker of geological processes. The latest developments in this field are reviewed in this contribution. The combined application of U-Pb zircon and rutile chronology in provenance studies, particularly when complemented by lower-T thermochronometry data, allows the isotopic characterization of the sources across a wide range of temperatures. The benefits of applying detrital zircon-rutile U-Pb chronology as a coupled provenance proxy are presented here, with a focus on the Eastern Himalayan-Indo-Burman region, where a growing number of successful studies employs such an approach to help constrain river drainage and basin evolution and to infer feedback relationships between erosion, tectonics and climate.


2008 ◽  
Vol 61 ◽  
pp. 362-367
Author(s):  
H.M. Harman ◽  
N.W. Waipara ◽  
C.J. Winks ◽  
L.A. Smith ◽  
P.G. Peterson ◽  
...  

Bridal creeper is a weed of natural and productive areas in the northern North Island of New Zealand A classical biocontrol programme was initiated in 20052007 with a survey of invertebrate fauna and pathogens associated with the weed in New Zealand Although bridal creeper was attacked by a wide range of generalist invertebrates their overall damage affected


2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


Polymer Chemistry: A Practical Approach in Chemistry has been designed for both chemists working in and new to the area of polymer synthesis. It contains detailed instructions for preparation of a wide-range of polymers by a wide variety of different techniques, and describes how this synthetic methodology can be applied to the development of new materials. It includes details of well-established techniques, e.g. chain-growth or step-growth processes together with more up-to-date examples using methods such as atom-transfer radical polymerization. Less well-known procedures are also included, e.g. electrochemical synthesis of conducting polymers and the preparation of liquid crystalline elastomers with highly ordered structures. Other topics covered include general polymerization methodology, controlled/"living" polymerization methods, the formation of cyclic oligomers during step-growth polymerization, the synthesis of conducting polymers based on heterocyclic compounds, dendrimers, the preparation of imprinted polymers and liquid crystalline polymers. The main bulk of the text is preceded by an introductory chapter detailing some of the techniques available to the scientist for the characterization of polymers, both in terms of their chemical composition and in terms of their properties as materials. The book is intended not only for the specialist in polymer chemistry, but also for the organic chemist with little experience who requires a practical introduction to the field.


2021 ◽  
Vol 22 (4) ◽  
pp. 2104
Author(s):  
Pedro Robles ◽  
Víctor Quesada

Eleven published articles (4 reviews, 7 research papers) are collected in the Special Issue entitled “Organelle Genetics in Plants.” This selection of papers covers a wide range of topics related to chloroplasts and plant mitochondria research: (i) organellar gene expression (OGE) and, more specifically, chloroplast RNA editing in soybean, mitochondria RNA editing, and intron splicing in soybean during nodulation, as well as the study of the roles of transcriptional and posttranscriptional regulation of OGE in plant adaptation to environmental stress; (ii) analysis of the nuclear integrants of mitochondrial DNA (NUMTs) or plastid DNA (NUPTs); (iii) sequencing and characterization of mitochondrial and chloroplast genomes; (iv) recent advances in plastid genome engineering. Here we summarize the main findings of these works, which represent the latest research on the genetics, genomics, and biotechnology of chloroplasts and mitochondria.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 931
Author(s):  
Ioana-Codruţa Mirică ◽  
Gabriel Furtos ◽  
Ondine Lucaciu ◽  
Petru Pascuta ◽  
Mihaela Vlassa ◽  
...  

The aim of this research was to develop new electrospun membranes (EMs) based on polycaprolactone (PCL) with or without metronidazole (MET)/nano-hydroxyapatite (nHAP) content. New nHAP with a mean diameter of 34 nm in length was synthesized. X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR) were used for structural characterization of precursors and EMs. The highest mechanical properties (the force at maximum load, Young’s modulus and tensile strength) were found for the PCL membranes, and these properties decreased for the other samples in the following order: 95% PCL + 5% nHAP > 80% PCL + 20% MET > 75% PCL + 5% nHAP + 20% MET. The stiffness increased with the addition of 5 wt.% nHAP. The SEM images of EMs showed randomly oriented bead-free fibers that generated a porous structure with interconnected macropores. The fiber diameter showed values between 2 and 16 µm. The fiber diameter increased with the addition of nHAP filler and decreased when MET was added. New EMs with nHAP and MET could be promising materials for guided bone regeneration or tissue engineering.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2967
Author(s):  
Seunghoon Choi ◽  
Sungjin Park ◽  
Minjoo Park ◽  
Yerin Kim ◽  
Kwang Min Lee ◽  
...  

Biomineralization, a well-known natural phenomenon associated with various microbial species, is being studied to protect and strengthen building materials such as concrete. We characterized Rhodococcus erythreus S26, a novel urease-producing bacterium exhibiting CaCO3-forming activity, and investigated its ability in repairing concrete cracks for the development of environment-friendly sealants. Strain S26 grown in solid medium formed spherical and polygonal CaCO3 crystals. The S26 cells grown in a urea-containing liquid medium caused culture fluid alkalinization and increased CaCO3 levels, indicating that ureolysis was responsible for CaCO3 formation. Urease activity and CaCO3 formation increased with incubation time, reaching a maximum of 2054 U/min/mL and 3.83 g/L, respectively, at day four. The maximum CaCO3 formation was achieved when calcium lactate was used as the calcium source, followed by calcium gluconate. Although cell growth was observed after the induction period at pH 10.5, strain S26 could grow at a wide range of pH 4–10.5, showing its high alkali tolerance. FESEM showed rhombohedral crystals of 20–60 µm in size. EDX analysis indicated the presence of calcium, carbon, and oxygen in the crystals. XRD confirmed these crystals as CaCO3 containing calcite and vaterite. Furthermore, R. erythreus S26 successfully repaired the artificially induced large cracks of 0.4–0.6 mm width.


2021 ◽  
Vol 9 (2) ◽  
pp. 336
Author(s):  
Laura Matarredona ◽  
Mónica Camacho ◽  
Basilio Zafrilla ◽  
Gloria Bravo-Barrales ◽  
Julia Esclapez ◽  
...  

Haloarchaea can survive and thrive under exposure to a wide range of extreme environmental factors, which represents a potential interest to biotechnology. Growth responses to different stressful conditions were examined in the haloarchaeon Haloferax mediterranei R4. It has been demonstrated that this halophilic archaeon is able to grow between 10 and 32.5% (w/v) of sea water, at 32–52 °C, although it is expected to grow in temperatures lower than 32 °C, and between 5.75 and 8.75 of pH. Moreover, it can also grow under high metal concentrations (nickel, lithium, cobalt, arsenic), which are toxic to most living beings, making it a promising candidate for future biotechnological purposes and industrial applications. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis quantified the intracellular ion concentrations of these four metals in Hfx. mediterranei, concluding that this haloarchaeon can accumulate Li+, Co2+, As5+, and Ni2+ within the cell. This paper is the first report on Hfx. mediterranei in which multiple stress conditions have been studied to explore the mechanism of stress resistance. It constitutes the most detailed study in Haloarchaea, and, as a consequence, new biotechnological and industrial applications have emerged.


Sign in / Sign up

Export Citation Format

Share Document