scholarly journals Industrial Verification and Research Development of Lime–Gypsum Fertilizer Granulation Method

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 119 ◽  
Author(s):  
Robert Siuda ◽  
Jerzy Kwiatek ◽  
Szymon Szufa ◽  
Andrzej Obraniak ◽  
Piotr Piersa ◽  
...  

This work concerns non-pressure granulation of mineral materials used for the production of agricultural fertilizers for soil deacidification. In order to expand the product range of Nordkalk Poland sp. z o. o. located in Poland, the granulation conditions of the gypsum–lime mix were examined with the use of various granulation methods. The processed mixture was Jurassic lime flour mined in the Sławno mine (Poland) and waste gypsum (sulfogypsum) obtained from the largest coal-fired power plant in the EU, Bełchatów Power Plant (Poland). This paper presents the results of the optimization of the gypsum–lime fertilizer granulation process. The results of the study of granulation of gypsum–lime mixture realized in one-stage technology in a disc granulator were compared with the effects of two-stage agglomeration. During the research, a mixture (in a 1:1 ratio) of waste sulfogypsum and lime flour was used. Such a weight ratio provides maximum use of the sulfogypsum waste while maintaining good mechanical properties of the granulate. The granulated bed was moistened with a lignosulfonate solution. The process was carried out periodically. After the experiment, the grain composition of the granulate obtained was determined and tests were performed to determine the strength of the product. The test results were compared with analogous ones obtained during granulation with the use of molasses (waste from sugar production). The results obtained were verified during a trial carried out on an industrial scale.

2015 ◽  
Vol 804 ◽  
pp. 129-132
Author(s):  
Sumrerng Rukzon ◽  
Prinya Chindaprasirt

This research studies the potential for using waste ash from industrial and agricultural by-products as a pozzolanic material. Classified fly ash (FA) and ground rice husk ash (RA) were the materials used. Water requirement, compressive strength and porosity of cement mortar were investigated. Test results indicated that FA and RA (waste ash) have a high potential to be used as a good pozzolanic material. The water requirement of mortar mix decreases with the increases in fly ash content. For ground rice husk ash (RA), the water requirement of mortar mix increases with the increases in rice husk ash content. In addition, the reduction in porosity was associated with the increase in compressive strength.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1361
Author(s):  
István Bodnár ◽  
Dávid Matusz-Kalász ◽  
Rafael Ruben Boros ◽  
Róbert Lipták

The Hungarian society and the Hungarian state are constantly increasing their solar capacity. More and more solar power plants are being put into operation. The largest of these has a 100 MW peak capacity. Such power plants do not require constant maintenance. However, in the case of low productivity, a conditional assessment is required. The reason for production loss can also be manufacturing, installation, and operational errors. A flying drone was used for finding failures by thermographic scouting. Furthermore, electroluminescent (EL) and flash tests give a comprehensive view of the real state of the modules in a mobile laboratory. We had the opportunity to summarize these test results of more than a thousand modules operating in a solar power plant. The report on the power plant shows that a significant part of the modules became unusable in a short time. After four years, 10% of the 260 Wp modules suffered a performance reduction of more than 10%.


2020 ◽  
Vol 47 (3) ◽  
pp. 275-282
Author(s):  
Dewi Andriani ◽  
Desta Wirnas ◽  
Dan Trikoesoemaningtyas

Sorghum has a growing popularity for food, feed, biofuel, and therefore needs to be developed. The research aimed to compare the effectiveness of pedigree and modified bulk selection methods for improving yield in three sorghum populations. The genetic materials used were 60 F6 lines from three populations, namely PI 10-90-A x Numbu, PI 150-20-A x Numbu and PI 150-20-A x Kawali which had been selected using pedigree and modified bulk methods. The experiment was conducted from October 2018 to February 2019 at the Cikabayan Experimental Station of IPB University, Dramaga, Bogor. The experiment was arranged in an augmented design with six checks, namely Kawali, Numbu, PI 10-90-A, PI 150-20-A, Samurai 1, and Samurai 2 which were replicated four times. Observations were made on agronomic traits and yield. Plant height and grain weight per panicle had high heritability and large genotypic coefficients of variation. The contrast test results showed significant differences between populations in plant height, panicle length, days of harvesting and 100-seed weight. On the other hand, no significant difference was observed among selection methods, indicating that both methods were equally effective for increasing sorghum yield. The pedigree selection and modified bulk selection increased grain yield per panicle by 14.1 g and 18.2 g respectively. Bulk of the best genotypes in early generation could be an alternative of bulk selection method. Keywords: contrast test, differential selection, genotypic coefficient of variation, heritability


Author(s):  
Rina Wijayanti ◽  
Siti Napfiah

This research aims to produce products such as module, which supporter statistics courses in IKIP Budi Utomo Malang institutions. It can be used to enhance the students' ability to solve problems. This research development method using ADDIE models which include analysis, design, development, implementation, evaluation. Methods of data collection in this study include legibility test. Results of this study we concluded the step wrote statistics module that determining competency standards, specify the title of the module, arrange the contents of the module, cover design, legibility test, revision and production. Based on the conclusion that thelegibility test for aspects of language, presentation, and graphic declared valid while the worthiness aspect of the module is very valid. So based on student legibility test module does not need to be revised. 


2021 ◽  
Vol 15 (4) ◽  
pp. 581-584
Author(s):  
Božo Bujanić ◽  
Matija Košak

The paper presents and describes the procedure of testing the materials that were available for the production of a multifunctional protective helmet. The procedure was carried out at the company Šestan-Busch d.o.o. as part of the EU project for the development and production of a multifunctional protective helmet. The test results showed that carbon fibers polymers as a composite material have the best impact absorption properties which was a key criterion for material selection. Other materials; glass fibers polymers, aramid fibers polymers and combinations in the test procedure showed worse results compared to the selected criterion.


2018 ◽  
Vol 1 (1) ◽  
pp. 20
Author(s):  
Indri Nurwahidah

The research was conducted to determine the characteristics and forms of matter; similarly determine the validity, reliability, as well as the students' response to the measurement results HOT reasoning about TIMSS models to measure student HOT developed. The method used is the research development. Products in the form of multiple choice questions as well as the reasons of the students' answers. Student responses obtained from the questionnaire responses the students after using such a matter. Based on the criteria of due diligence in a very good product. Characteristic of reasoning about TIMSS models which contain components reasoning refers to the TIMSS. About the validity of the overall test results show that the question is valid and feasible to use to measure student HOT. Reliability test results indicate that the matter is reliable and can be used well. Student response after use problems in the excellent category, obtained a percentage of 82.66%. HOT measurement results in the category of students is still low, at SMPN 8 Semarang amounted to 51.54%, SMP Kartika III-2 Semarang amounted to 31.16%, and the MTs NU amounted to 47.68% Ungaran. Problem reasoning models that have been developed decent TIMSS used to measure student HOT.


2002 ◽  
Vol 49 (3-4) ◽  
pp. 75-80 ◽  
Author(s):  
Dejan Markovic

Evaluation o f cytotoxicity is a first step in assessment of dental materials biocompatibility. Necessity for unique criteria in researches resulted in international standard methodology (ISO). The aim of this study was to assess the cytotoxicity of four restorative materials (three glas ionomer cements and one composite material) and to define adventages and disadventages of common ISO methodology for evaluation of this aspect of dental materials biocompatibility. Research was designed according to ISO/TC 106/1995 and ISO/ 10993-5/1994 methodology. Materials used in this investigation were Fuji IILC (GC), Vitiemer (3M), Ionosit fill (DMG-Hamburg), Luxat (DMG-Hamburg). Evaluation of cytotoxicity was carried out on standardized Human Diploid Cell Lung WI-38. Obtained results showed expressive cytotoxic effect of all investigated materials without statisticaly significant difference. Estimation of material biocompatibility and assessment of obtained results can be made only after establishment of correlation with test results. Common ISO methodology is simple for conductance and reproduction, and use of cell cultures in researches is painless, cost effective and without moral or ethical dilemma.


Author(s):  
Ahmad Jawad ◽  
Mohd Suffian Misaran ◽  
Md. Mizanur Rahman ◽  
Mohd Azlan Ismail

Solar chimney power plant is a sustainable alternative for electricity generation using solar as the source of energy. In general, the main body of a solar chimney plant requires a tall structure which is costly and challenging to construct. Thus, it is important to increase the performance of the solar chimney power plant and have a better energy-cost ratio. This study aims to experimentally investigate the influence of divergent solar chimney as opposed to a cylindrical chimney on solar chimney performance. Three divergent scaled-down solar chimney model at 1-meter, 1.5-meter and 2-meter were fabricated and tested for its performance at various simulated heat loads. The test results were compared with similar heights cylindrical solar chimney. The experiments show that divergent solar chimney increases the theoretical power generation potential and improves the stalk effect and have higher outlet velocity compared to a cylindrical solar chimney. The power potential of the divergent chimney is increased up to 18 times with the maximum theoretical power obtain at 0.183W on the 2-meter divergent chimney. Higher temperature was recorded on the 2-meter divergent chimney outlet at 341.3k compared to 330.4k on the cylindrical chimney indicates better stack effect. The highest average velocities in the divergent and cylindrical chimneys were recorded under the electric heat load of 2 kW at 0.994 m/s and 0.820 m/s respectively in the 1-meter configuration. It is also observed that the air velocity in a shorter divergent chimney is higher than taller divergent chimney models while better compared to all cylindrical height. This study finds that a shorter divergent solar chimney produces greater energy compared to a higher cylindrical solar chimney. Therefore, it is possible to reduce the overall cost of solar chimney by reducing the height of the main structure without sacrificing the performance of the solar chimney.


Author(s):  
Alakesh Manna ◽  
Amandeep Kundal

Advanced ceramic materials are gradually becoming very important for their superior properties such as high hardness, wear resistance, chemical resistance, and high strength to weight ratio. But machining of advanced ceramic like Al2O3-ceramics is very difficult by any well known and common machining processes. Normally, cleavages and triangular fractures generate when machining of these materials is done by traditional machining methods. It is essential to develop an efficient and accurate machining method for processing advanced ceramic materials. For effective machining of Al2O3-ceramics, a traveling wire electrochemical spark machining (TW-ECSM) setup has been developed. The developed TW-ECSM setup has been utilized to machine Al2O3 ceramic materials and subsequently test results are utilized to analyze the machining performance characteristic. Different SEM photographs show the actual condition of the micro machined surfaces. The practical research analysis and test results on the machining of Al2O3 ceramics by developed TWECSM setup will provide a new guideline to the researchers and manufacturing engineers.


Sign in / Sign up

Export Citation Format

Share Document