scholarly journals Coencapsulation of Polyphenols and Anthocyanins from Blueberry Pomace by Double Emulsion Stabilized by Whey Proteins: Effect of Homogenization Parameters

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2525 ◽  
Author(s):  
Bio Bamba ◽  
John Shi ◽  
Carole Tranchant ◽  
Sophia Xue ◽  
Charles Forney ◽  
...  

Blueberry pomace is a rich source of high-value bioactive polyphenols with presumed health benefits. Their incorporation into functional foods and health-related products benefits from coencapsulation and protection of polyphenol-rich extracts in suitable carriers. This study aimed to create a water-in-oil-in-water (W1/O/W2) double emulsion system suitable for the coencapsulation of total phenolics (TP) and anthocyanins (TA) from a polyphenol-rich extract of blueberry pomace (W1). The effect of critical physical parameters for preparing stable double emulsions, namely homogenization pressure, stirring speed and time, was investigated by measuring the hydrodynamic diameter, size dispersity and zeta potential of the oil droplets, and the encapsulation efficiency of TP and TA. The oil droplets were negatively charged (negative zeta potential values), which was related to the pH and composition of W2 (whey protein isolate solution) and suggests stabilization by the charged whey proteins. Increasing W1/O/W2 microfluidization pressure from 50 to 200 MPa or homogenization speed from 6000 to 12,000 rpm significantly increased droplet diameter and zeta potential and decreased TA and TP encapsulation efficiency. Increasing W1/O/W2 homogenization time from 15 to 20 min also increased droplet diameter and zeta potential and lowered TA encapsulation efficiency, while TP encapsulation did not vary significantly. In contrast, increasing W1/O homogenization time from 5 to 10 min at 10,000 rpm markedly increased TA encapsulation efficiency and reduced droplet diameter and zeta potential. High coencapsulation rates of blueberry polyphenols and anthocyanins around 80% or greater were achieved when the oil droplets were relatively small (mean diameter < 400 nm), with low dispersity (<0.25) and a high negative surface charge (−40 mV or less). These characteristics were obtained by homogenizing for 10 min at 10,000 rpm (W1/O), then 6000 rpm for 15 min, followed by microfluidization at 50 MPa.

2021 ◽  
Vol 11 (4) ◽  
pp. 786-791
Author(s):  
Ye Liu ◽  
Guihua Xia ◽  
Shaosheng Liu ◽  
Zhenyu Song

The aim of the present study was to formulate oral chewable tablets of Montelukast (MTL) in the form of nanoparticles (NP’s). The MTL loaded NP’s were formulated by ionotropic external gelation method using tripolyphosphate (TPP) as crosslinking agent and Tween 60 as surfactant. NP’s were characterized for drug loading, encapsulation efficiency, surface morphology, saturation solubility, particle size, zeta potential and polydispersity index. The optimized NP formulation was used for development of chewable tablets using direct compression method. The prepared tablets were characterized for disintegration test, dissolution, thickness, hardness, friability and assay. The optimized formulation was evaluated in asthamatic animals to demonstrate the efficiency in asthama. The encapsulation efficiency of NP’s was found between 91.24 to 98.21% while drug loading was in the range of 10.09–14.25%. All formulations were found of nanosized in nature (110 to 200 nm) with excellent zeta potential (20.12 to 22.27 mV). PDI of all NP formulations were found within acceptable limit (less than 0.3). The nanoparticles were found spherical in shape with smooth surface. The saturation solubility of MTL was enhanced nearly 10 times (92 mg/ml) as compared to pure MTL saturation solubility. All physical parameters of the tablets were found within range. The optimized tablets showed disintegration time of 20 sec while other formulations showed DT in the rage of 35–57 sec. Tab1 (Optimized formulation) showed almost 100% MTL release from chewable tablets within the period of 30 min. Reduction in lung resistance (RI) was found in animals treated with Tab1. This reduction in RI was found nearly two fold and three fold as compare to MTL treated and control group animals. These observations clearly support the efficacy of chewable tablets containing nanoparticulate MTL in asthmatic animals.


2020 ◽  
Vol 26 (14) ◽  
pp. 1543-1555 ◽  
Author(s):  
Meltem E. Durgun ◽  
Emine Kahraman ◽  
Sevgi Güngör ◽  
Yıldız Özsoy

Background: Topical therapy is preferred for the management of ocular fungal infections due to its superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the site of disease. However, the optimization of effective ocular formulations has always been a major challenge due to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs and, overcome ocular barriers. Objective: In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH) conditions. Method: Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS. The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution, zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion cells. Results: Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole from the micelles was higher than that of suspension. Conclusion: The results revealed that the optimized micellar formulation of posaconazole offers a potential approach for topical ocular administration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Hou ◽  
Ming Han ◽  
Jinxun Wang

AbstractThis work investigates the effect of the surface charges of oil droplets and carbonate rocks in brine and in surfactant solutions on oil production. The influences of the cations in brine and the surfactant types on the zeta-potentials of both oil droplets and carbonate rock particles are studied. It is found that the addition of anionic and cationic surfactants in brine result in both negative or positive zeta-potentials of rock particles and oil droplets respectively, while the zwitterionic surfactant induces a positive charge on rock particles and a negative charge on oil droplets. Micromodels with a CaCO3 nanocrystal layer coated on the flow channels were used in the oil displacement tests. The results show that when the oil-water interfacial tension (IFT) was at 10−1 mN/m, the injection of an anionic surfactant (SDS-R1) solution achieved 21.0% incremental oil recovery, higher than the 12.6% increment by the injection of a zwitterionic surfactant (SB-A2) solution. When the IFT was lowered to 10−3 mM/m, the injection of anionic/non-ionic surfactant SMAN-l1 solution with higher absolute zeta potential value (ζoil + ζrock) of 34 mV has achieved higher incremental oil recovery (39.4%) than the application of an anionic/cationic surfactant SMAC-l1 solution with a lower absolute zeta-potential value of 22 mV (30.6%). This indicates that the same charge of rocks and oil droplets improves the transportation of charged oil/water emulsion in the porous media. This work reveals that the surface charge in surfactant flooding plays an important role in addition to the oil/water interfacial tension reduction and the rock wettability alteration.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2736
Author(s):  
Zuiliang Deng ◽  
Guimin Lu ◽  
Lefeng Fu ◽  
Weishan Wang ◽  
Baicun Zheng

The aim of this paper is to study the adsorption behavior of polycarboxylate superplasticizers (PCE) on coarse aggregates with a property of high water consumption (above 2%). The coarse aggregates were ground into a powder to create large bibulous stone powder, and it was observed that significant amounts of the ether-based PCE were absorbed onto large bibulous stone powder. The adsorption rate immediately reached a maximum after 5 min and then gradually decreased until an equilibrium absorption was established after 30 min. Zeta potential, infrared spectroscopy, and thermogravimetric analysis (TGA) measurements confirmed that the polycarboxylate superplasticizer adsorbed on the surface of the stone powder. Hydrodynamic diameter measurements showed that the polycarboxylate superplasticizer molecules were smaller than pore size, and the surface area and pore volume were reduced by the polymer incorporation in the pores.


Author(s):  
Daniela Helena Guimarães Pelegrine ◽  
Maria Thereza Moraes Santos Gomes

Abstract This work showed the whey proteins solubility curves, according with temperature and pH conditions. The product constituted of a whey protein isolate obtained from cow milk (ALACENTM 895), acquired by New Zeland Milk Products Ltd. There is a straight analogy between fouling and protein unfolding when milk derived fluids are processed in equipments of heat exchangers, where whey proteins are unfolded in an irreversible way, exposing hidrophobic groups, and they become insoluble and form aggregates. An integrated study was conducted on the effects of temperature and pH on the solubility of whey proteins. The solubility was determined experimentally in the temperature range of 40-90 °C, and pH range of 5.0 - 6.8. The results showed that, both the temperature and pH influenced in the protein solubility; besides, the solubility values were minimum at the pH 4.0 for all temperature values. It was also observed that solubility decreased with temperature increased.


2021 ◽  
Vol 901 ◽  
pp. 117-122
Author(s):  
Netnapa Ontao ◽  
Sirivan Athikomkulchai ◽  
Sarin Tadtong ◽  
Phuriwat Leesawat ◽  
Chuda Chittasupho

Ocimum gratissimum L. leaf oil exhibited many pharmacological properties. This study aimed to formulate and evaluate the physical and chemical stability of O.gratissimum leaf oil nanoemulsion. O.gratissimum leaf oil was extracted by hydrodistillation. The major component of the essential oil eugenol, was analyzed by UV-Vis spectrophotometry. Nanoemulsions of O.gratissimum leaf oil were formulated using polysorbate 80, hyaluronic acid, poloxamer 188, and deionized water by phase inversion composition method. The hydrodynamic diameter, polydispersity index, and zeta potential value of O.gratissimum leaf oil nanoemulsion was evaluated by a dynamic light scattering technique. The %remaining of eugenol in the nanoemulsion was analyzed by UV-Vis spectrophotometry. The essential oil extracted from of O. gratissimum leaf oil was a clear, pale yellow color. The %yield of the essential oil was 0.15 ± 0.03% v/w. The size of the nanoemulsion was less than 106 nm. The polydispersity index of the nanoemulsion was ranging from 0.303 - 0.586 and the zeta potential value of the nanoemulsion was closely to zero, depending on the formulation component. O. gratissimum leaf oil at concentrations ranging from 0.002 - 0.012% v/v contained 35 - 41% of eugenol. The size of nanoemulsion was significantly decreased after storage at 4 °C, while significantly increased upon storage at 45 °C. The size of nanoemulsion stored at 30 °C did not significantly change. The %remaining of eugenol in the nanoemulsion was more than 90% after storage at 4 °C and 30 °C for 28 days. The percentage of eugenol remaining in the nanoemulsion stored at 45 °C was more than 85 - 90%, suggesting that the temperature affected the stability of eugenol in the nanoemulsion.


Author(s):  
Noha Saleh ◽  
Soha Elshaer ◽  
Germeen Girgis

Background: Fluconazole (FLZ), a potent antifungal medication, is characterized by poor water solubility that reduced its antifungal efficacy. Objective: This study aimed to prepare FLZ-loaded polymeric nanoparticles (NPs) by using different polymers and techniques as a mean of enhancing the antifungal activity of FLZ. Methods: NP1, NP2, and NP3 were prepared by the double emulsion/solvent evaporation method using PLGA, PCL, and PLA, respectively. The ionotropic pre-gelation technique was applied to prepare an alginate/chitosan-based formulation (NP4). Particle size, zeta potential, encapsulation efficiency, and loading capacity were characterized. FT-IR spectra of FLZ, the polymers, and the prepared NPs were estimated. NP4 was selected for further in-vitro release evaluation. The broth dilution method was used to assess the antifungal activity of NP4 using a resistant clinical isolate of Candida albicans. Results: The double emulsion method produced smaller-sized particles (<390 nm) but with much lower encapsulation efficiency (< 12%). Alternatively, the ionic gelation method resulted in nanosized particles with a markedly higher encapsulation efficiency of about 40%. The FT-IR spectroscopy confirmed the loading of the FLZ molecules in the polymeric network of the prepared NPs. The release profile of NP4 showed a burst initial release followed by a controlled pattern up to 24 hours with a higher percent released relative to the free FLZ suspension. NP4 was able to reduce the value of MIC of FLZ by 20 times. Conclusion: The antifungal activity of FLZ against C. albicans was enhanced markedly via its loading in the alginate/chitosan-based polymeric matrix of NP4.


2003 ◽  
Vol 83 (5) ◽  
pp. 353-364 ◽  
Author(s):  
Florence Caussin ◽  
Marie-H�l�ne Famelart ◽  
Jean-Louis Maubois ◽  
Sa�d Bouhallab

2012 ◽  
Vol 466-467 ◽  
pp. 405-410 ◽  
Author(s):  
Z.H. Li ◽  
Ji Min Wu ◽  
Y.L. Zhao ◽  
J. Guan ◽  
S.J. Huang ◽  
...  

The present investigation was aimed at optimization of BMPs loaded PLGA microspheres formulations resulting in improved encapsulation efficiency and sustained release of BMPs by varying the molecular weight and copolymer composition of PLGA. Double-emulsion solvent evaporation method was used to prepare the microspheres. The effect of polymer molecular weight and copolymer composition on particle properties and release behavior in vitro was reported. The particle size and encapsulation efficiency increased with increase in molecular weight and lactide content of PLGA. While BMPs release in vitro decreased with increase in molecular weight and lactide content of PLGA. SEM pictures revealed that almost all microspheres were spherical but internal morphology was different. The morphology of PLGA microspheres with exorbitant molecular weight(100kD) was anomalistic whereas the morphology of PLGA microspheres with higher glycolide content(50) have porous structures.


Sign in / Sign up

Export Citation Format

Share Document